School of Applied Sciences (SAS) (2006-July 2014)
Permanent URI for this community
Browse
Browsing School of Applied Sciences (SAS) (2006-July 2014) by Author "Abo Al-Kheer, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Estimating the variability of tillage forces on a chisel plough shank by modeling the variability of tillage system parameters(Elsevier Science B.V., Amsterdam., 2011-08-01T00:00:00Z) Abo Al-Kheer, A.; Kharmanda, M. G.; El-Hami, A.; Mouazen, Abdul MounemIn this paper, a probabilistic approach is proposed for quantifying the variability of the tillage forces for the shank of a chisel plough with narrow tines and to estimate the failure probability. An existing three-dimensional analytical model of tool forces from McKyes was used to model the interaction between the tillage tools and the soil. The variability of tillage forces was modeled, taking into account the variability of soil engineering properties, tool design parameters and operational conditions. The variability of the soil engineering properties was modeled by means of experimental observations. The dispersion effect of each tillage system parameter on the tillage forces was determined by a sensitivity analysis. The results show that the variability of the horizontal and vertical forces follows a lognormal distribution (μ=0.872, ξ=0.449; μ=0.004, ξ=0.447) and the relationship between these forces is positive and quasi-linear (ρ(PH,Pv)=0.93).This lognormal variability was integrated into the estimation of the failure probability for the shank by using Monte Carlo simulation (MCS) and the first-order reliability method (FORM). The results obtained by these two methods, with the assumption of non-correlation between the horizontal and vertical forces, were almost identical. However, the FORM method was faster and simpler, compared to the MCS technique. Furthermore, the correlation between the horizontal and vertical forces has no significant effect on the failure probability, regardless of the correlation strength. Therefore, it is concluded that the FORM method can be used to estimate the failure probability without considering the correlation between horizontal and vertical foItem Open Access Theoretical analysis of the spatial variability in tillage forces for fatigue analysis of tillage machines(Elsevier Science B.V., Amsterdam., 2011-08-01T00:00:00Z) Abo Al-Kheer, A.; Eid, M.; Aoues, Y.; El-Hami, A.; Kharmanda, M. G.; Mouazen, Abdul MounemThis paper presents a new theoretical model to describe the spatial variability in tillage forces for the purpose of fatigue analysis of tillage machines. The proposed model took into account both the variability in tillage system parameters (soil engineering properties, tool design parameters and operational conditions) and the cyclic effects of mechanical behavior of the soil during failure ahead of tillage tools on the spatial variability in tillage forces. The stress-based fatigue life approach was used to determine the life time of tillage machines, based on the fact that the applied stress on tillage machines is primarily within the elastic range of the material. Stress cycles with their mean values and amplitudes were determined by the rainflow algorithm. The damage friction caused by each cycle of stress was computed according to the Soderberg criterion and the total damage was calculated by the Miner's law. The proposed model was applied to determine the spatial variability in tillage forces on the shank of a chisel plough. The equivalent stress history resulted from these forces were calculated by means of a finite element model and the Von misses criterion. The histograms of mean stress and stress amplitude obtained by the rainflow algorithm showed significant dispersions. Although the equivalent stress is smaller than the yield stress of the material, the failure by fatigue will occur after a certain travel distance. The expected distance to failure was found to be df=0.825×106km. It is concluded that the spatial variability in tillage forces has significant effect on the life time of tillage machines and should be considered in the design analysis of tillage machines to predict the life time. Further investigations are required to correlate the results achieved by the proposed model with field tests and to validate the proposed assumptions to model the spatial variability in tillage forces