Browsing by Author "Abu Samah, Azizan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Chemical characterisation of water-soluble ions in atmospheric particulate matter on the East Coast of Peninsular Malaysia(European Geosciences Union (EGU) / Copernicus Publications, 2019-02-06) Farren, Naomi J.; Dunmore, Rachel E.; Mead, Mohammed Iqbal; Mohd Nadzir, Mohd Shahrul; Abu Samah, Azizan; Phang, Siew-Moi; Bandy, Brian J.; Sturges, William T.; Hamilton, Jacqueline F.Air quality on the east coast of Peninsular Malaysia is influenced by local anthropogenic and biogenic emissions as well as marine air masses from the South China Sea and aged emissions transported from highly polluted East Asian regions during the winter monsoon season. An atmospheric observation tower has been constructed on this coastline at the Bachok Marine Research Station. Daily PM2.5 samples were collected from the top of the observation tower over a 3-week period, and ion chromatography was used to make time-resolved measurements of major atmospheric ions present in aerosol. SO 2− 4 was found to be the most dominant ion present and on average made up 66 % of the total ion content. Predictions of aerosol pH were made using the ISORROPIA II thermodynamic model, and it was estimated that the aerosol was highly acidic, with pH values ranging from −0.97 to 1.12. A clear difference in aerosol composition was found between continental air masses originating from industrialised regions of East Asia and marine air masses predominantly influenced by the South China Sea. For example, elevated SO 2− 4 concentrations and increased Cl− depletion were observed when continental air masses that had passed over highly industrialised regions of East Asia arrived at the measurement site. Correlation analyses of the ionic species and assessment of ratios between different ions provided an insight into common sources and formation pathways of key atmospheric ions, such as SO 2− 4 , NH + 4 and C 2 O 2− 4 . To our knowledge, time-resolved measurements of water-soluble ions in PM2.5 are virtually non-existent in rural locations on the east coast of Peninsular Malaysia. Overall this dataset contributes towards a better understanding of atmospheric composition in the Maritime Continent, a region of the tropics that is vulnerable to the effects of poor air quality, largely as a result of rapid industrialisation in East Asia.Item Open Access Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models(Springer, 2017-11-08) Mohd Nadzir, Mohd Shahrul; Ashfold, Matthew J.; Khan, Md Firoz; Robinson, Andrew D.; Bolas, Conor; Latif, Mohd Talib; Wallis, Benjamin M.; Mead, Mohammed Iqbal; Abdul Hamid, Haris Hafizal; Harris, Neil; Ahmad Ramly, Zamzam Tuah; Lai, Goh Thian; Liew, Ju Neng; Ahamad, Fatimah; Uning, Royston; Abu Samah, Azizan; Maulud, Khairul Nizam; Suparta, Wayan; Zainudin, Siti Khalijah; Abdul Wahab, Muhammad Ikram; Mujahid, Aazani; Morris, Kenobi Isima; Dal Sasso, Nicholas; Sahani, Mazrura; Müller, Moritz; Yeok, Foong Swee; Abdul Rahman, NasaruddinThe Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009–2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC’16 increased from a minimum of 5 ppb to ~ 10–13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC’16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.