Browsing by Author "Aliyu, A. M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Gas/liquid flow behaviours in a downward section of large diameter vertical serpentine pipes(Elsevier, 2015-10-09) Almabrok, Almabrok Abushanaf; Aliyu, A. M.; Lao, Liyun; Yeung, HoiAn experimental study on air/water flow behaviours in a 101.6 mm i.d. vertical pipe with a serpentine configuration is presented. The experiments are conducted for superficial gas and liquid velocities ranging from 0.15 to 30 m/s and 0.07 to 1.5 m/s, respectively. The bend effects on the flow behaviours are significantly reduced when the flow reaches an axial distance of 30 pipe diameters or more from the upstream bend. The mean film thickness data from this study has been used to compare with the predicted data using several falling film correlations and theoretical models. It was observed that the large pipe data exhibits different tendencies and this manifests in the difference in slope when the dimensionless film thickness is plotted as a power law function of the liquid film Reynolds number.Item Open Access Interfacial friction in upward annular gas–liquid two-phase flow in pipes(Elsevier, 2017-02-17) Aliyu, A. M.; Baba, Yahaya D.; Lao, Liyun; Yeung, H.; Kim, K. C.Accurate prediction of interfacial friction between the gas and liquid in annular two-phase flow in pipes is essential for the proper modelling of pressure drop and heat transfer coefficient in pipeline systems. Many empirical relationships have been obtained over the last half century. However, they are restricted to limited superficial liquid and gas velocity ranges, essentially apply to atmospheric pressures, and the relationships are only relevant for pipes with inner diameters between 10 and 50 mm. In this study, we carried out experiments in a large diameter flow loop of 101.6 mm internal diameter with the superficial gas and liquid ranges of 11–29 m/s and 0.1–1.0 m/s respectively. An examination of published interfacial friction factor correlations was carried out using a diverse database which was collected from the open literature for vertical annular flow. The database includes measurements in pipes of 16–127 mm inner diameter for the liquid film thickness, interfacial shear stress, and pressure gradient for air-water, air-water/glycerol, and argon-water flows. Eleven studies are represented with experimental pressures of up to 6 bar. Significant discrepancies were found between many of the published correlations and the large pipe data, primarily in the thick film region at low interfacial shear stress. A correlation for the interfacial friction factor was hence derived using the extensive database. The correlation includes dimensionless numbers for the effect of the diameter across pipe scales to be better represented and better fit the wide range of experimental conditions, fluid properties, and operating pressures.Item Open Access Interfacial shear in adiabatic downward gas/liquid co-current annular flow in pipes(Elsevier, 2015-10-28) Aliyu, A. M.; Lao, Liyun; Almabrok, Almabrok Abushanaf; Yeung, HoiInterfacial friction is one of the key variables for predicting annular two-phase flow behaviours in vertical pipes. In order to develop an improved correlation for interfacial friction factor in downward co-current annular flow, the pressure gradient, film thickness and film velocity data were generated from experiments carried out on Cranfield University’s Serpent Rig, an air/water two-phase vertical flow loop of 101.6 mm internal diameter. The air and water superficial velocity ranges used are 1.42–28.87 and 0.1–1.0 m/s respectively. These correspond to Reynolds number values of 8400–187,000 and 11,000–113,000 respectively. The correlation takes into account the effect of pipe diameter by using the interfacial shear data together with dimensionless liquid film thicknesses related to different pipe sizes ranging from 10 to 101.6 mm, including those from published sources by numerous investigators. It is shown that the predictions of this new correlation outperform those from previously reported studies.Item Open Access Prediction of entrained droplet fraction in co-current annular gas–liquid flow in vertical pipes(Elsevier, 2017-03-07) Aliyu, A. M.; Almabrok, Almabrok Abushanaf; Baba, Yahaya D.; Archibong-Eso, Archibong; Lao, Liyun; Yeung, Hoi; Kim, K. C.The entrained droplet fraction is an important parameter in annular two-phase flow, as its correlations are key inputs in flow simulation codes for the prediction of pressure drop and critical heat flux or dryout. Investigators have stressed the importance of extending the validity range of current correlations so that more conditions are covered. This could be achieved for example by including fluids with higher viscosities, a wider range of operating pressures, and increase in the size of pipes used for experiments (most of the data in the literature are from pipes of 50 mm diameter and below). In attempt to improve the latter, experiments were conducted in a 101.6 mm gas–liquid flow loop at Cranfield University’s Oil and Gas Engineering Laboratory and data on the fraction of droplets were collected in the annular flow regime by measuring the film velocity, from which the droplet fraction was calculated. Comparison of the film velocity by this method and by a mass balance showed close agreement. A capacitance Wire Mesh Sensor was used for flow visualisation in order to distinguish between annular and churn flow. In order to arrive at an improved correlation, over 1300 data points were gathered from other published works. These include air–water studies where large pipes of up to 127 mm in diameter were used. The others were from small-diameter pipes and for refrigerant, steam–water, air–water, and air–glycerine flows. Since in the annular regime, the gas flow entrains liquid droplets into the core, their presence alters the properties of the gas core. Therefore, accurate predictions are pivotal for the energy efficient design and operation of facilities in the petroleum and nuclear power industry. The correlation obtained here showed good agreement with the collected databank.Item Open Access Upward gas–liquid two-phase flow after a U-bend in a large-diameter serpentine pipe(Elsevier, 2017-01-02) Aliyu, A. M.; Almabrok, Almabrok Abushanaf; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi; Kim, Kyung ChunWe present an experimental study on the flow behaviour of gas and liquid in the upward section of a vertical pipe system with an internal diameter of 101.6 mm and a serpentine geometry. The experimental matrix consists of superficial gas and liquid velocities in ranges of 0.15–30 m/s and from 0.07 to 1.5 m/s, respectively, which cover bubbly to annular flow. The effects on the flow behaviours downstream of the 180° return bend are significantly reduced when the flow reaches an axial distance of 47 pipe diameters from the U-bend. Therefore, reasonably developed flow is attained at this development length downstream of the bend. Other published measurements for large-diameter film thickness show similar trends with respect to the superficial gas velocity. However, the trends differ from those of small-diameter pipes, with which the film thickness decreases much faster with increasing gas flow. As a result, only a few of the published correlations for small pipe data agreed with the experimental data for large pipe film thickness. We therefore modified one of the best-performing correlations, which produced a better fit. Qualitative and statistical analyses show that the new correlation provides improved predictions for two-phase flow film thickness in large-diameter pipes.Item Open Access Vertical annular gas–liquid two-phase flow in large diameter pipes(Cranfield University, 2015-09) Aliyu, A. M.; Lao, Liyun; Yeung, HoiGas–liquid annular two phase flow in pipes is important in the oil and gas, nuclear and the process industries. It has been identified as one of the most frequently encountered flow regimes and many models (empirical and theoretical) for the film flow and droplet behaviour for example have been developed since the 1950s. However, the behaviour in large pipes (those with diameter greater than 100 mm) has not been fully explored. As a result, the two- phase flow characteristics, data, and models specifically for such pipes are scarce or non-existent such that those from smaller pipes are extrapolated for use in design and operation. Many authors have cautioned against this approach since multiphase pipe flow behaviour is different between small and large pipes. For instance the typical slug flows seem not to occur in vertical upwards flows when the pipe diameter exceeds 100 mm. It is therefore imperative that theoretical models and empirical correlations for such large diameter pipes are specifically developed. ...[cont.]