CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Attwood, Alexis"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Scoping studies to establish the capability and utility of a real-time bioaerosol sensor to characterise emissions from environmental sources
    (Elsevier, 2018-08-09) Nasir, Zaheer A.; Hayes, Enda; Williams, Ben; Gladding, Toni; Rolph, Catherine A.; Khera, Shagun; Jackson, Simon; Bennett, Allan; Collins, Samuel; Parks, Simon; Attwood, Alexis; Kinnersley, Robert P.; Walsh, Kerry; Garcia Alcega, Sonia; Pollard, Simon J. T.; Drew, Gill; Coulon, Frederic; Tyrrel, Sean
    A novel dual excitation wavelength based bioaerosol sensor with multiple fluorescence bands called Spectral Intensity Bioaerosol Sensor (SIBS) has been assessed across five contrasting outdoor environments. The mean concentrations of total and fluorescent particles across the sites were highly variable being the highest at the agricultural farm (2.6 cm−3 and 0.48 cm−3, respectively) and the composting site (2.32 cm−3 and 0.46 cm−3, respectively) and the lowest at the dairy farm (1.03 cm−3 and 0.24 cm−3, respectively) and the sewage treatment works (1.03 cm−3 and 0.25 cm−3, respectively). In contrast, the number-weighted fluorescent fraction was lowest at the agricultural site (0.18) in comparison to the other sites indicating high variability in nature and magnitude of emissions from environmental sources. The fluorescence emissions data demonstrated that the spectra at different sites were multimodal with intensity differences largely at wavelengths located in secondary emission peaks for λex 280 and λex 370. This finding suggests differences in the molecular composition of emissions at these sites which can help to identify distinct fluorescence signature of different environmental sources. Overall this study demonstrated that SIBS provides additional spectral information compared to existing instruments and capability to resolve spectrally integrated signals from relevant biological fluorophores could improve selectivity and thus enhance discrimination and classification strategies for real-time characterisation of bioaerosols from environmental sources. However, detailed lab-based measurements in conjunction with real-world studies and improved numerical methods are required to optimise and validate these highly resolved spectral signatures with respect to the diverse atmospherically relevant biological fluorophores.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback