CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bello, Muhammadu"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dynamic modelling of microalgae cultivation process in high rate algal wastewater pond
    (Elsevier, 2016-11-04) Bello, Muhammadu; Ranganathan, Panneerselvam; Brennan, Feargal P.
    In this work, a comprehensive dynamic mathematical modelling to simulate the production of microalgae in a high rate algal pond (HRAP) is attempted. A synergetic algal–bacterial system comprising various interrelated biological and chemical system processes is presented. The dynamic behaviour of HRAP system is studied by solving mass balance equations of different components which account light intensity and gas–liquid mass transfer. The model predictions are compared with the previously reported studies in the literature. The influence of kinetic and operating parameters, including the supply of CO2, the maximum growth rate, pond depth and dilution rates, on the pond performance are evaluated. The sensitivity analysis of important process parameters is also discussed in this study. The developed model, as a tool, can be used to assess the factors that affect the pond performance criteria, including algal productivity and the dynamics of nutrient requirements.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Life cycle optimization for sustainable algal biofuel production using integrated nutrient recycling technology
    (American Chemical Society, 2017-09-18) Bello, Muhammadu; Ranganathan, Panneerselvam; Brennan, Feargal P.
    In this study, a multi-objective optimization of sustainable integration of algal biofuel production using nutrient recycling technology, such as anaerobic digestion and hydrothermal liquefaction, is considered. Gross annual profitability and global warming potential (GWP) are the criteria chosen for the design of the algal biofuel production system. Three scenarios, such as full-scale (baseline), pilot-scale (conservative), and lab-scale (nominal), are chosen based on the expected maturity levels and nutrient demand. The results of the optimization produce Pareto sets of optimal solutions for acknowledging the trade-off between the economic and the environmental criteria of the integrated system. It is found that the anaerobic digestion (AD) technology shows better performance in terms of an environmental perspective, displacing the excessive fertilizer requirements due to its maturity in comparison with the hydrothermal liquefaction (HTL) process. However, HTL is a new, evolving, promising nutrient recycling technology which demonstrates economic preferences compared to the AD process due to its low cost of production.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback