Browsing by Author "Binod, Parameswaran"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access Cleaner technologies to combat heavy metal toxicity(Elsevier, 2021-07-10) Rebello, Sharrel; Sivaprasad, M. S.; Anoopkumar, A. N.; Jayakrishnan, Lekshmi; Aneesh, Embalil Mathachan; Narisetty, Vivek; Sindhu, Raveendran; Binod, Parameswaran; Pugazhendhi, Arivalagan; Pandey, AshokHeavy metals frequently occur as silent poisons present in our daily diet, the environment we live and the products we use, leaving us victims to various associated drastic health and ecological bad effects even in meagre quantities. The prevalence of heavy metals can be traced from children's toys, electronic goods, industrial effluents, pesticide preparation, and even in drinking water in some instances; necessitating methods to remediate them. The current review discusses the various physicochemical and biological methods employed to tackle the problem of heavy metal pollution. Apart from the conventional methods following the principles of adsorption, precipitation, coagulation, and various separation techniques, the advancements made in the directions of biological heavy metal detoxification using microbes, plants, algae have been critically analyzed to identify the specific utility of different agents for specific heavy metal removal. The review paper is a nutshell of different heavy metal remediation strategies, their merits, demerits, and modifications done to alleviate process of heavy metal pollution.Item Open Access Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: a review(Elsevier, 2021-12-14) Awasthi, Mukesh Kumar; Kumar, Vinay; Yadav, Vivek; Sarsaiya, Surendra; Awasthi, Sanjeev Kumar; Sindhu, Raveendran; Binod, Parameswaran; Kumar, Vinod; Pandey, Ashok; Zhang, ZengqiangPoly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.Item Open Access Isobutanol production by Candida glabrata – A potential organism for future fuel demands(Elsevier, 2021-08-13) Lakshmi, Nair M.; Binoop, Mohan; Salini, Chandrasekharan Nair; Vivek, Narisetty; Sindhu, Raveendran; Pandey, Ashok; Binod, ParameswaranDue to global concern on the sustainability of energy from fossil fuels, isobutanol as a biofuel has urged attention in recent years due to its high octane number, higher blending capacity, low vapour pressure and higher energy content. The present study reports a novel wild strain, Candida glabrata, which produces isobutanol under submerged fermentation condition. Different process parameters have been optimized by both conventional as well as statistical methods. The production of isobutanol is enhanced in the presence of valine and this attribute the degradation pathway of valine is highly depend on isobutanol production. Under optimized condition, the yield of isobutanol is increased from 0.19 g/L to 0.96 g/L. This strain has not yet reported for the production of isobutanol.Item Open Access Lignocellulose in future biorefineries: strategies for cost-effective production of biomaterials and bioenergy(Elsevier, 2021-10-28) Reshmy, R.; Philip, Eapen; Madhavan, Aravind; Sirohi, Ranjna; Pugazhendhi, Arivalagan; Binod, Parameswaran; Awasthi, Mukesh Kumar; Vivek, Narisetty; Kumar, Vinod; Sindhu, RaveendranLignocellulosic biomass has been emerging as a biorefinery precursor for variety of biofuels, platform chemicals and biomaterials because of its specific surface morphology, exceptional physical, chemical and biological characteristics. The selection of proper raw materials, integration of nano biotechnological aspects, and designing of viable processes are important to attain a cost-effective route for the development of valuable end products. Lignocellulose-based materials can prove to be outstanding in terms of techno-economic viability, as well as being environmentally friendly and reducing effluent load. This review should facilitate the identification of better lignocellulosic sources, advanced pretreatments, and production of value-added products in order to boost the future industries in a cleaner and safer way.Item Open Access Myco-biorefinery approaches for food waste valorization: Present status and future prospects(Elsevier, 2022-07-09) Awasthi, Mukesh Kumar; Harirchi, Sharareh; Sar, Taner; VS, Vigneswaran; Rajendran, Karthik; Gómez-García, Ricardo; Hellwig, Coralie; Binod, Parameswaran; Sindhu, Raveendran; Madhavan, Aravind; Kumar, A.N. Anoop; Kumar, Vinod; Kumar, Deepak; Zhang, Zengqiang; Taherzadeh, Mohammad J.Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.Item Open Access Organic waste recycling for carbon smart circular bioeconomy and sustainable development: a review(Elsevier, 2022-07-15) Awasthi, Mukesh Kumar; Yan, Binghua; Sar, Taner; Gómez-García, Ricardo; Ren, Liheng; Sharma, Pooja; Binod, Parameswaran; Sindhu, Raveendran; Kumar, Vinod; Kumar, Deepak; Mohamed, Badr A.; Zhang, Zengqiang; Taherzadeh, Mohammad J.The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.Item Open Access Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes(Elsevier, 2021-10-28) Jokodola, Esther Oreoluwa; Narisetty, Vivek; Castro, Eulogio; Durgapal, Sumit; Coulon, Frederic; Sindhu, Raveendran; Binod, Parameswaran; Banu, J. Rajesh; Kumar, Gopalakrishnan; Kumar, VinodSuccinic acid (SA) is a top platform chemical obtainable from biomass. The current study evaluated the potential of Actinobacillus succinogenes for SA production using xylose-rich hemicellulosic fractions of two important lignocellulosic feedstocks, olive pits (OP) and sugarcane bagasse (SCB) and the results were compared with pure xylose. Initial experiments were conducted in shake flask followed by batch and fed-batch cultivation in bioreactor. Further separation of SA from the fermented broth was carried out by adapting direct crystallisation method. During fed-batch culture, maximum SA titers of 36.7, 33.6, and 28.7 g/L was achieved on pure xylose, OP and SCB hydrolysates, respectively, with same conversion yield of 0.27 g/g. The recovery yield of SA accumulated on pure xylose, OP and SCB hydrolysates was 79.1, 76.5, and 75.2%, respectively. The results obtained are of substantial value and pave the way for development of sustainable SA biomanufacturing in an integrated biorefinery.Item Open Access Recent advances in biodiesel production: challenges and solutions(Elsevier, 2021-06-28) Mathew, Gincy Marina; Raina, Diksha; Narisetty, Vivek; Kumar, Vinod; Saran, Saurabh; Pugazhendi, Arivalagan; Sindhu, Raveendran; Pandey, Ashok; Binod, ParameswaranMono alkyl fatty acid ester or methyl ethyl esters (biodiesel) are the promising alternative for fossil fuel or petroleum derived diesel with similar properties and could reduce the carbon foot print and the greenhouse gas emissions. Biodiesel can be produced from renewable and sustainable feedstocks like plant derived oils, and it is biodegradable and non-toxic to the ecosystem. The process for the biodiesel production is either through traditional chemical catalysts (Acid or Alkali Transesterification) or enzyme mediated transesterification, but as enzymes are natural catalysts with environmentally friendly working conditions, the process with enzymes are proposed to overcome the drawbacks of chemical synthesis. At present 95% of the biodiesel production is contributed by edible oils worldwide whereas recycled oils and animal fats contribute 10% and 6% respectively. Although every process has its own limitations, the enzyme efficiency, resistance to alcohols, and recovery rate are the crucial factors to be addressed. Without any benefit of doubt, production of biodiesel using renewable feedstocks and enzymes as the catalysts could be recommended for the commercial purpose, but further research on improving the efficiency could be an advantage.Item Open Access Recent advances in microbial biosynthesis of C3 – C5 diols: Genetics and process engineering approaches(Elsevier, 2020-12-13) Vivek, Narisetty; Hazeen, Sulfath Hakkim; Alphy, Maria Paul; Kumar, Vinod; Magdouli, Sara; Sindhu, Raveendran; Pandey, Ashok; Binod, ParameswaranDiols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussedItem Open Access Sweet sorghum juice as an alternative carbon source and adaptive evolution of Lactobacillus brevis NIE9.3.3 in sweet sorghum juice and biodiesel derived crude glycerol to improve 1, 3 propanediol production(Elsevier, 2021-07-21) Alphy, Maria Paul; Anjali, Kodakkattil Babu; Vivek, Narisetty; Thirumalesh, Banjagere Veerabhadrappa; Sindhu, Raveendran; Pugazhendi, Arivalagan; Pandey, Ashok; Binod, ParameswaranSweet sorghum juice (SSJ) is considered as an ideal complement for carbon supplement in ethanol fermentation for its ease of cultivation. Extraction of fermentable sugars from the sweet sorghum is very simple in comparison to lignocellulosic biomass. Hence sweet sorghum is a suitable candidate as a feedstock. In the present study, batch fermentations were carried out using Lactobacillus brevis NIE9.3.3, a facultative anaerobe, isolated through onsite enrichment technique to produce 1,3-propanediol and other co-metabolites, in glucose-glycerol co-fermentation. To make the process more sustainable, the glucose supplemented in the production media was replaced with SSJ. The supplementation of 40 g/L sorghum juice and 40 g/L crude glycerol in the production media resulted in the titre of 25.9 g/L 1, 3-PDO with a volumetric yield of 0.64 g 1,3-PDO/g glycerol. Adaptation of the microorganisms and cultivation under controlled conditions of temperature and substrate concentrations followed by selection was carried out, that is, adaptive evolution. Among the adaptively evolved strains, PD 20.100 has displayed better performance and increased the titres up to 38.4 g/L with a volumetric yield of 0.64 g 1,3-PDO/g glycerol. The industrial applicability of the fermentation process was checked in pilot scale and the production yield was comparable with that of flask scale. The utilization of agricultural and biodiesel industrial waste for the production of 1,3-PDO by a non-pathogenic organism and the strain improvement through ALE for better utilization and conversion of substrates indicates the novelty of this work.