CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chen, Xinyan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving 2D resolution in geosynchronous SAR via spatial spectrum synthesis: method and verification
    (IEEE, 2024-02-01) Chen, Xinyan; Chen, Zhiyang; Li, Yuanhao; Hu, Cheng; Dong, Xichao; Hobbs, Stephen
    Geosynchronous synthetic aperture radar (GEO SAR) has the advantages of a short revisit time and a large beam footprint. Enhancing spatial resolution has become a hotspot in spaceborne SAR research areas. The existing designs of GEO SAR suffer from the problem of poor resolution (greater than 10 m) and cause low-precision observation in urban areas. First time, this article points out that GEO SAR has the ability to improve the two-dimensional (2-D) resolution of SAR images by spatial spectrum synthesis based on 2-D baselines, and proposes models and a signal processing method involved in GEO SAR spectrum synthesis. The 2-D spatial baselines of GEO SAR are analyzed and evaluated first based on satellite software and real ephemeris from Beidou Inclined Geosynchronous Orbit (IGSO) navigation satellites to demonstrate the potential of 2-D resolution improvement. Then the analytical models of the spectral shape and relative spectral shift between GEO SAR images are derived. Furthermore, a 2-D spectrum synthesis algorithm suitable for GEO SAR is also proposed, where we use deramping operation instead of the traditional spectrum shifting process. Nonideal factors are considered in the processing of synthesized. In addition, performances of the proposed algorithm, including the resolution improvement factor, the amplitude fluctuation, and the critical baseline, are constructed. Finally, computer simulations and equivalent experiments based on Beidou IGSO navigation satellites verify the proposed algorithm.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback