Browsing by Author "Cravo-Laureau, Cristiana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Can chemical and molecular biomarkers help discriminate between industrial, rural and urban environments?(Elsevier, 2018-03-16) Garcia Alcega, Sonia; Nasir, Zaheer A.; Ferguson, Robert M. W.; Noël, Cyril; Cravo-Laureau, Cristiana; Whitby, Corinne; Dumbrell, Alex J.; Colbeck, Ian; Tyrrel, Sean; Coulon, FredericAir samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3 l) were collected every 2 h for a total of 6 h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170 μg m−3 in summer and 20–250 μg m−3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297 ng m−3) and in winter the park (11,724 ng m−3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds.Item Open Access Enhanced pilot bioremediation of oily sludge from petroleum refinery disposal under hot-summer Mediterranean climate(Elsevier, 2021-10-23) Said, Olfa Ben; Cravo-Laureau, Cristiana; Armougom, Fabrice; Cipullo, Sabrina; Khelil, Meriem Ben; Yahiya, Marouen Ben Haj; Douihech, Abdeljabar; Beyrem, Hamouda; Coulon, Frederic; Duran, RobertLarge pilot scale bioremediation approaches were implemented for the treatments of oily sludge (OS) characterised by alkaline pH (pH > 9), high concentration of metals (3% dry weight) and high total petroleum hydrocarbons content (TPH) rangingbetween 22,000 and 67,300 mg kg −1 from a Tunisian petroleum refinery. The treatments included bioaugmentation and biostimulation approaches with autochthonous isolated bacterial strains and consortia. Chemical, microbial, and ecotoxicological analyses were performed over a period of 180 days incubation. The bioremediation treatments favoured the development of Proteobacteria, Firmicutes and Bacteroidetes following an ecological succession of specialist bacterial groups, first associated to hydrocarbon degradation (e.g. Marinobacter and Alcanivorax) that resulted in a greater extent of TPH-degradation (up to 80%), and the selection of metal resistant bacteria including Hyphomonas, Phaeobacter, and Desulfuromusa. The best performances were obtained when bioaugmentation and biostimulation were combined. Over 90% of the TPH initial concentration was degraded over 180 days, which was accompanied with a 3-fold reduction of ecotoxicity. Our study demonstrates the efficacy of large pilot scale bioremediation of highly contaminated oily sludge, providing the evidence that the management of autochthonous microbial communities is of paramount importance for the success of the bioremediation process.Item Open Access Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum(Elsevier, 2021-07-31) Bourhane, Zeina; Lanzén, Anders; Cagnon, Christine; Atai, Emmanuel; Borja, Angel; Cravo-Laureau, Cristiana; Duran, RobertMicrobial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of “specialist” and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.