CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Du, Min"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analytical and experimental evaluation of SiC-inverter nonlinearites for traction drives used in electric vehicles
    (IEEE, 2017-10-23) Ding, Xiaofeng; Du, Min; Duan, Chongwei; Guo, Hong; Xiong, Rui; Xu, Jinquan; Cheng, Jiawei; Luk, Patrick Chi-Kwong
    This paper investigates the inverter nonlinearities in a drive system based on silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-mosfets) and compares its performance with that of an equivalent silicon insulated-gate bipolar transistor (Si-IGBT) system. Initially, a novel comprehensive analytical model of the inverter voltage distortion is developed. Not only voltage drops, dead time, and output capacitance, but also switching delay times and voltage overshoot of the power devices are taken into account in the model. Such a model yields a more accurate prediction of the inverter's output voltage distortion, and is validated by experimentation. Due to inherent shortcomings of the commonly used double pulse test, the switching characteristics of both SiC-mosfets and Si-IGBTs in the pulse width modulation inverter are tested instead, such that the actual performances of the SiC and Si devices in the motor drive system are examined. Then, the switching performance is incorporated into the physical model to quantify the distorted voltages of both the SiC-based and Si-based systems. The results show that, despite its existing nonlinearities, the SiC-based drive has lower voltage distortion compared to the conventional Si-based drive as a result of its shorter switching times and smaller voltage drop, as well as a higher efficiency. Finally, the overriding operational advantages of the SiC-based drive over its Si-based counterpart is fully demonstrated by comprehensive performance comparisons.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback