CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "El Alami, Rafiq"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evidence of collaborative opportunities to ensure long-term sustainability in African farming
    (Elsevier, 2023-02-17) El Fartassi, Imane; Milne, Alice E.; El Alami, Rafiq; Rafiqi, Maryam; Hassall, Kirsty L.; Waine, Toby W.; Zawadzka, Joanna; Diarra, Alhousseine; Corstanje, Ron
    Farmers face the challenge of increasing production to feed a growing population and support livelihoods, whilst also improving the sustainability and resilience of cropping systems. Understanding the key factors that influence farming management practices is crucial for determining farmers' adaptive capacity and willingness to engage in cooperative strategies. To that end, we investigated management practices that farmers adopt and the factors underlying farmers' decision-making. We also aimed to identify the constraints that impede the adoption of strategies perceived to increase farming resilience and to explore how the acceleration of technology adoption through cooperation could ensure the long-term sustainability of farming. Surveys were distributed to farming stakeholders and professionals who worked across the contrasting environments of Morocco. We used descriptive statistics and analysis by log-linear modelling to predict the importance of factors influencing farmers’ decision-making. The results show that influencing factors tended to cluster around environmental pressures, crop characteristics and water availability with social drivers playing a lesser role. Subsidies were also found to be an important factor in decision-making. Farming stakeholders generally believed that collaborative networks are likely to facilitate the adoption of sustainable agricultural practices. We conclude that farmers need both economic incentives and technical support to enhance their adaptive capacity as this can lessen the socioeconomic vulnerability inherent in arid and semi-arid regions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Stepwise model parametrisation using satellite imagery and hemispherical photography: tuning AquaCrop sensitive parameters for improved winter wheat yield predictions in semi-arid regions
    (Elsevier, 2024-03-08) Oulaid, Bader; Milne, Alice E.; Waine, Toby; El Alami, Rafiq; Rafiqi, Maryam; Corstanje, Ron
    Crop models are complex with many parameters, which has limited their application. Here we present an approach which both removes the model complexity through reducing the parameter dimensionality through sensitivity analysis, and presents a subsequent efficient approach to model parameterisation using swarm optimisation. We do this for two key model outputs, crop canopy and yield, and for two types of observational data, hemispheric photographs and Landsat7 imagery. Importantly we compare the usefulness of these two sources of data in terms of accurate yield prediction. The results showed that the dominant model parameters that predict canopy cover were generally consistent across the fields, with the exception of those related water stress. Although mid-season canopy cover extracted from Landsat7 was underestimated, good agreement was found between the simulated and observed canopy cover for both sources of data. Subsequently, less accurate yield predictions were achieved with the Landsat7 compared to the hemispherical photography-based parametrizations. Despite the small differences in the canopy predictions, the implications for yield prediction were substantial with the parametrization based on hemispherical photography providing far more accurate estimates of yield. There are, however, additional resource implications associated with hemispherical photography. We evaluate these trade-offs, providing model parametrization sets and demonstrating the potential of satellite imagery to assist AquaCrop, particularly on large scales where ground measurements are challenging.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback