Browsing by Author "Hill, Martyn"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Modelling and validation of a guided acoustic wave temperature monitoring system(MDPI, 2021-11-06) Yule, Lawrence; Zaghari, Bahareh; Harris, Nicholas; Hill, MartynThe computer modelling of condition monitoring sensors can aide in their development, improve their performance, and allow for the analysis of sensor impact on component operation. This article details the development of a COMSOL model for a guided wave-based temperature monitoring system, with a view to using the technology in the future for the temperature monitoring of nozzle guide vanes, found in the hot section of aeroengines. The model is based on an experimental test system that acts as a method of validation for the model. Piezoelectric wedge transducers were used to excite the S0 Lamb wave mode in an aluminium plate, which was temperature controlled using a hot plate. Time of flight measurements were carried out in MATLAB and used to calculate group velocity. The results were compared to theoretical wave velocities extracted from dispersion curves. The assembly and validation of such a model can aide in the future development of guided wave based sensor systems, and the methods provided can act as a guide for building similar COMSOL models. The results show that the model is in good agreement with the experimental equivalent, which is also in line with theoretical predictions.Item Open Access Temperature hotspot detection on printed circuit boards (pcbs) using ultrasonic guided waves—a machine learning approach(MDPI, 2024-02-07) Yule, Lawrence; Harris, Nicholas; Hill, Martyn; Zaghari, Bahareh; Grundy, JoannaThis paper addresses the challenging issue of achieving high spatial resolution in temperature monitoring of printed circuit boards (PCBs) without compromising the operation of electronic components. Traditional methods involving numerous dedicated sensors such as thermocouples are often intrusive and can impact electronic functionality. To overcome this, this study explores the application of ultrasonic guided waves, specifically utilising a limited number of cost-effective and unobtrusive Piezoelectric Wafer Active Sensors (PWAS). Employing COMSOL multiphysics, wave propagation is simulated through a simplified PCB while systematically varying the temperature of both components and the board itself. Machine learning algorithms are used to identify hotspots at component positions using a minimal number of sensors. An accuracy of 97.6% is achieved with four sensors, decreasing to 88.1% when utilizing a single sensor in a pulse–echo configuration. The proposed methodology not only provides sufficient spatial resolution to identify hotspots but also offers a non-invasive and efficient solution. Such advancements are important for the future electrification of the aerospace and automotive industries in particular, as they contribute to condition-monitoring technologies that are essential for ensuring the reliability and safety of electronic systems.Item Open Access Temperature monitoring of through-thickness temperature gradients in thermal barrier coatings using ultrasonic guided waves(Springer, 2024-01-24) Yule, Lawrence; Harris, Nicholas; Hill, Martyn; Zaghari, BaharehUltrasonic guided waves offer a promising method of monitoring the online temperature of plate-like structures in extreme environments, such as aero-engine nozzle guide vanes (NGVs), and can provide the resolution, response rate, and robust operation that is required in aerospace. Previous investigations have shown the potential of such a system but the effect of the complex physical environment on wave propagation is yet to be considered. This article uses a numerical approach to investigate how thermal barrier coatings (TBCs) applied to the surface of many components designed for extreme thermal conditions will affect ultrasonic guided wave propagation, and how a system can be employed to monitor through-thickness temperature changes. The top coat/bond coat boundary in NGVs has been shown to be a temperature critical point that is difficult to monitor with traditional temperature sensors, which highlights the potential of ultrasonic guided waves. Differences in application method and layer thickness are considered, and analysis of through-thickness displacement profiles and dispersion curves are used to predict signal response and determine the most suitable mode of operation. Heat transfer simulations (COMSOL) have been used to predict temperature gradients within a TBC, and dispersion curves have been produced from the temperature dependant material properties. Time dependant simulations of wave propagation are in good agreement with dispersion curve predictions of wave velocity for the two lowest order modes in three thicknesses of TBC top coat (100, 250, and 500 μ ). When wave velocity measurements from the simulations are compared to dispersion curves generated at isotropic temperatures, the corresponding temperature represents the average temperature of a gradient system well. Such a measurement system could, in principle, be used in conjunction with surface temperature measurement systems to monitor through-thickness temperature changes.Item Open Access Towards in-flight temperature monitoring for nozzle guide vanes using ultrasonic guided waves(AIAA, 2021-07-28) Yule, Lawrence M.; Zaghari, Bahareh; Harris, Nicholas; Hill, MartynThe temperature monitoring of nozzle guide vanes is a challenging task due to the extreme temperatures, gas pressures, and cramped conditions of aero-engines. Ultrasonic guided waves are an attractive method of temperature monitoring as the sensors can be placed outside of the gas path without influencing component operation. In this paper the suitability of using ultrasonic guided waves in the form of the S0 Lamb wave mode is investigated by comparing experimentally measured wave velocity change with temperature against theoretical wave velocity extracted from dispersion curves. Waves are transmitted through an aluminium plate using a pitch-catch wedge transducer configuration, and wave velocity is measured using across-correlation function. Temperature is controlled with a hot plate from room temperature to 100°C, and monitored using thermocouples. Results show that this transducer configuration is capable of monitoring a change in temperature based on a change in wave velocity, showing a good agreement with theoretical predictions, within 4.89+/-2.27 m/s on average. The temperature sensitivity of the system is 1.26–1.78 m/s/°C over the range 24°C–94°C. This shows the potential for a guided wave based temperature monitoring system, assuming a suitable transducer configuration can be found that is able to operate at higher temperatures. Further investigation will study the possibility of using Piezoelectric Wafer Active Sensors (PWAS) or waveguides for this application.