Browsing by Author "Hosseinian-Far, Amin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Economic evaluation of mental health effects of flooding using Bayesian networks(MDPI, 2021-07-13) Sedighi, Tabassom; Varga, Liz; Hosseinian-Far, Amin; Daneshkhah, AlirezaThe appraisal of appropriate levels of investment for devising flooding mitigation and to support recovery interventions is a complex and challenging task. Evaluation must account for social, political, environmental and other conditions, such as flood state expectations and local priorities. The evaluation method should be able to quickly identify evolving investment needs as the incidence and magnitude of flood events continue to grow. Quantification is essential and must consider multiple direct and indirect effects on flood related outcomes. The method proposed is this study is a Bayesian network, which may be used ex-post for evaluation, but also ex-ante for future assessment, and near real-time for the reallocation of investment into interventions. The particular case we study is the effect of flood interventions upon mental health, which is a gap in current investment analyses. Natural events such as floods expose people to negative mental health disorders including anxiety, distress and post-traumatic stress disorder. Such outcomes can be mitigated or exacerbated not only by state funded interventions, but by individual and community skills and experience. Success is also dampened when vulnerable and previously exposed victims are affected. Current measures evaluate solely the effectiveness of interventions to reduce physical damage to people and assets. This paper contributes a design for a Bayesian network that exposes causal pathways and conditional probabilities between interventions and mental health outcomes as well as providing a tool that can readily indicate the level of investment needed in alternative interventions based on desired mental health outcomes.Item Open Access Mathematical and computational modelling frameworks for integrated sustainability assessment (ISA)(Springer, 2017-02-15) Farsi, Maryam; Hosseinian-Far, Amin; Daneshkhah, Alireza; Sedighi, TabassomSustaining and optimising complex systems are often challenging problems as such systems contain numerous variables that are interacting with each other in a nonlinear manner. Application of integrated sustainability principles in a complex system (e.g., the Earth’s global climate, social organisations, Boeing’s supply chain, automotive products and plants’ operations, etc.) is also a challenging process. This is due to the interactions between numerous parameters such as economic, ecological, technological, environmental and social factors being required for the life assessment of such a system. Functionality and flexibility assessment of a complex system is a major factor for anticipating the systems’ responses to changes and interruptions. This study outlines generic mathematical and computational approaches to solving the nonlinear dynamical behaviour of complex systems. The goal is to explain the modelling and simulation of system’s responses experiencing interaction change or interruption (i.e., interactive disruption). Having this knowledge will allow the optimisation of systems’ efficiency and would ultimately reduce the system’s total costs. Although, many research works have studied integrated sustainability behaviour of complex systems, this study presents a generic mathematical and computational framework to explain the behaviour of the system following interactive changes and interruptions. Moreover, a dynamic adaptive response of the global system over time should be taken into account. This dynamic behaviour can capture the interactive behaviour of components and sub-systems within a complex global system. Such assessment would benefit many systems including information systems. Due to emergence and expansion of big data analytics and cloud computing systems, such life-cycle assessments can be considered as a strategic planning framework before implementation of such information systems.Item Open Access Probabilistic modeling of financial uncertainties(IGI Global, 2018-04-30) Daneshkhah, Alireza; Hosseinian-Far, Amin; Chatrabgoun, Omid; Sedighi, Tabassom; Farsi, MaryamSince the global financial crash, one of the main trends in the financial engineering discipline has been to enhance the efficiency and flexibility of financial probabilistic risk assessments. Creditors could immensely benefit from such improvements in analysis hoping to minimise potential monetary losses. Analysis of real world financial scenarios require modeling of multiple uncertain quantities with a view to present more accurate, near future probabilistic predictions. Such predictions are essential for an informed decision making. In this article, the authors extend Bayesian Networks Pair-Copula Construction (BN-PCC) further using the minimum information vine model which results in a more flexible and efficient approach in modeling multivariate dependencies of heavy-tailed distribution and tail dependence as observed in the financial data. The authors demonstrate that the extended model based on minimum information Pair-Copula Construction (PCC) can approximate any non-Gaussian BN to any degree of approximation. The proposed method has been applied to the portfolio data derived from a Brazilian case study. The results show that the fitting of the multivariate distribution approximated using the proposed model has been improved compared to other previously published approaches.