CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hu, D"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On the chemical composition, microstructure and mechanical properties of a Nitrogen-contaminated Ti-6Al-4V component built by Wire-Arc Additive Manufacturing
    (IOP Publishing, 2024-08-01) Hu, D; Biswal, R; Sahu, VK; Fellowes, JW; Zadehkabir, A; Williams, SW; Davis, AE
    Additive manufacturing (AM) using recycled Ti-6Al-4V (Ti64) feedstock material from wrought waste streams is a novel process that can reduce the overall energy cost and carbon (CO2) footprint when compared to primary-production routes. The potential contamination of recycled feedstock material (e.g. C, O, N and Fe) can affect the microstructure and mechanical properties of the component. In this work, a Ti64 test wall built using wire arc AM (WAAM) was studied, where the top half only was contaminated by N through the shielding gas during deposition. This allowed a direct comparison of Ti64 WAAM material with high and low N content, deposited under otherwise identical conditions, to replicate the worst-case scenario of N contamination from using recycled swarf. The hardness of the N-contaminated section was found to be 25% higher than the uncontaminated section of the wall, demonstrating the N solid solution strengthening in Ti64. The room temperature transformed microstructure was found to have a 25% coarser α-lath thickness, which was proposed to be an effect of the AM cyclical heating and increasing of the β-transus temperature due to a higher level of N. Additionally, the outer layer of the N-contaminated sample section was found to have a refined parent β grain structure.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback