Browsing by Author "Huo, Shoudong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A revised Hilbert-Huang transformation to track non-stationary association of electroencephalography signals(IEEE, 2021-04-28) Shan, Xiaocai; Huo, Shoudong; Yang, Lichao; Cao, Jun; Zou, Jiaru; Chen, Liangyu; Sarrigiannis, Ptolemaios Georgios; Zhao, YifanThe time-varying cross-spectrum method has been used to effectively study transient and dynamic brain functional connectivity between non-stationary electroencephalography (EEG) signals. Wavelet-based cross-spectrum is one of the most widely implemented methods, but it is limited by the spectral leakage caused by the finite length of the basic function that impacts the time and frequency resolutions. This paper proposes a new time-frequency brain functional connectivity analysis framework to track the non-stationary association of two EEG signals based on a Revised Hilbert-Huang Transform (RHHT). The framework can estimate the cross-spectrum of decomposed components of EEG, followed by a surrogate significance test. The results of two simulation examples demonstrate that, within a certain statistical confidence level, the proposed framework outperforms the wavelet-based method in terms of accuracy and time-frequency resolution. A case study on classifying epileptic patients and healthy controls using interictal seizure-free EEG data is also presented. The result suggests that the proposed method has the potential to better differentiate these two groups benefiting from the enhanced measure of dynamic time-frequency association.Item Open Access Spatial–temporal graph convolutional network for Alzheimer classification based on brain functional connectivity imaging of electroencephalogram(Wiley, 2022-06-25) Shan, Xiaocai; Cao, Jun; Huo, Shoudong; Chen, Liangyu; Sarrigiannis, Ptolemaios Georgios; Zhao, YifanFunctional connectivity of the human brain, representing statistical dependence of information flow between cortical regions, significantly contributes to the study of the intrinsic brain network and its functional mechanism. To fully explore its potential in the early diagnosis of Alzheimer's disease (AD) using electroencephalogram (EEG) recordings, this article introduces a novel dynamical spatial–temporal graph convolutional neural network (ST-GCN) for better classification performance. Different from existing studies that are based on either topological brain function characteristics or temporal features of EEG, the proposed ST-GCN considers both the adjacency matrix of functional connectivity from multiple EEG channels and corresponding dynamics of signal EEG channel simultaneously. Different from the traditional graph convolutional neural networks, the proposed ST-GCN makes full use of the constrained spatial topology of functional connectivity and the discriminative dynamic temporal information represented by the 1D convolution. We conducted extensive experiments on the clinical EEG data set of AD patients and Healthy Controls. The results demonstrate that the proposed method achieves better classification performance (92.3%) than the state-of-the-art methods. This approach can not only help diagnose AD but also better understand the effect of normal ageing on brain network characteristics before we can accurately diagnose the condition based on resting-state EEG.