CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jawiarczyk, Natalia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Potential influence of sewer heat recovery on in-sewer processes
    (IWA Publishing, 2020-02-13) Abdel-Aal, Mohamad; Villa, Raffaella; Jawiarczyk, Natalia; Alibardi, Luca; Jensen, Henriette; Schellart, Alma; Jefferson, Bruce; Shepley, Paul; Tait, Simon
    Heat recovery from combined sewers has a significant potential for practical renewable energy provision as sources of heat demand and sewer pipes are spread across urban areas. Sewers are continuously recharged with relatively hot wastewater, as well as interacting with heat sources from surrounding air and soil. However, the potential effects of modifying sewage temperature on in-sewer processes have received little attention. The deposition of fats, oils and greases (FOGs) and hydrogen sulphide formation are biochemical processes and are thus influenced by temperature. This paper utilises a case study approach to simulate anticipated temperature reductions in a sewer network due to heat recovery. A laboratory investigation into the formation of FOG deposits at temperatures varying between 5 °C and 20 °C provided mixed results, with only a weak temperature influence, highlighting the need for more research to fully understand the influence of the wastewater composition as well as temperature on FOG deposit formation. A separate modelling investigation into the formation of hydrogen sulphide when inflow temperature is varied between 5 °C and 20 °C showed considerable reductions in hydrogen sulphide formation. Hence, heat extraction from sewers could be a promising method for managing some in-sewer processes, combined with traditional methods such as chemical dosing

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback