CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jevons, M P"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The Effects of fibre pre-stressing on the impact performance of composite laminates
    (2011-09-19) Jevons, M P; Iremonger, M J
    This thesis has presented the results and findings of a study carried out into the effects of fibre pre-stressing on the impact performance of composite laminates. Fibre prestress has been explained as a way of mechanically altering the internal residual stress state of a composite, which typically is a result of thermal, moisture and chemical expansions. It has been suggested that pre-stressing can offer potential benefits to composites by reducing or reversing the hygro-thermal stresses in a composite. It has also been suggested that the impact performance could be improved through fibre prestressing, which has given rise to this study. In this study panels have been made with various levels of pre-stress. A special system was developed to apply pre-stress to the laminates and the produced laminates were tested under low- and high-velocity impact regimes. To apply these regimes, an instrumented falling weight and a gas gun were used respectively. A short finite element study was carried out to supplement the experimental study and offer further insight into the failure mechanics. The main findings of the study were that although pre-stressing had no discernable effect on the high-velocity impact performance of the composite laminate considered, there was a noted effect on the low-velocity impact performance. Under low-velocity impacts the laminate showed an improved impact performance for increase levels of pre-stress, except at one critical pre-stress level (60 MPa), where the laminate absorbed less energy per damage area compared with unpre-stressed laminates.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback