CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jin, Peng"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Coupled analysis between catenary mooring and VLFS with structural hydroelasticity in waves
    (Elsevier, 2023-09-12) Wei, Yujia; Yu, Shuangrui; Jin, Peng; Huang, Luofeng; Elsherbiny, Khaled; Tezdogan, Tahsin
    The rapid growth of marine renewables has led to the development of very large floating structures (VLFS) that are designed to operate in deep seas. It is significant to understand the mechanism of the coupled effects between deformable VLFS and catenary mooring system. This paper presents a time-domain hydro-elastic-moored model developed by integrating a quasi-static mooring module into a fully coupled Computational Fluid Dynamics (CFD) - discrete-module-beam (DMB) approach. The model is used to investigate the coupled effects between structural hydroelasticity and loose-type mooring systems on a deformable VLFS in waves. The mooring and hydroelasticity codes are validated separately and show favourable agreement with other numerical and experimental results. Then the coupled effects between the mooring system and structural hydroelasticity are evaluated by assigning various design parameters, i.e., VLFS structural stiffness and mooring stiffness. The numerical results, including dynamic motions, longitudinal vertical bending moments (VBMs) and mooring tension forces are presented and analysed. These results can be used to design a VLFS with mooring in medium-deep sea, and help with the conventional mooring design for a less-stiffness VLFS due to hydroelastic response.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Motion response and energy harvesting of multi-module floating photovoltaics in seas
    (Elsevier, 2024-10-15) Zheng, Zhi; Jin, Peng; Huang, Qiang; Zhou, Binzhen; Xiang, Ruoxuan; Zhou, Zhaomin; Huang, Luofeng
    Floating Photovoltaic (FPV) systems are emerging as a new type of ocean renewable energy, offering advantages such as avoiding land use and promoting power generation efficiency. Providing significant cost-effectiveness for manufacturing, transportation, and installation, FPV systems with modular floating platforms exhibit the potential to replace the conventional large steel-frame one. However, the performance of such multi-floating body structures under wave conditions remain underexplored. In this paper, based on potential flow theory, the motion characteristics and power performance of the proposed FPV array connected by the articulated system are evaluated. The results indicate that the FPV arrays with shorter floating structures exhibit greater pitch motion, especially when the wave condition matches the pitch resonance. For multi-float cases, the articulated system, optimized with appropriate parameters, demonstrates efficacy as attenuators. Additionally, the proposed FPV array has great potential to serve as an infrastructure for integrating solar and wave energy. For a selected offshore site, potential wave energy output from motion attenuators between FPV floaters is assessed together with solar energy output. Overall, this study serves as a valuable reference for the design and optimization of the multi-modules FPV and advances the research on combined solar and wave energy utilization on floating structures.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback