Browsing by Author "Kamnis, S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process(American Chemical Society, 2016-02-03) Mahrukh, Mahrukh; Kumar, Arvind; Gu, Sai; Kamnis, S.; Gozali, E.This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a higher concentration of nanoparticles, smaller droplet sizes are preferred.Item Open Access Numerical analysis of multicomponent suspension droplets in high-velocity flame spray process(Springer Science Business Media, 2014-08-01T00:00:00Z) Gozali, E.; Mahrukh, Mahrukh; Gu, Sai; Kamnis, S.The liquid feedstock or suspension as a different mixture of liquid fuel ethanol and water is numerically studied in high-velocity suspension flame spray (HVSFS) process, and the results are compared for homogenous liquid feedstock of ethanol and water. The effects of mixture on droplet aerodynamic breakup, evaporation, combustion, and gas dynamics of HVSFS process are thoroughly investigated. The exact location where the particle heating is initiated (above the carrier liquid boiling point) can be controlled by increasing the water content in the mixture. In this way, the particle inflight time in the high-temperature gas regions can be adjusted avoiding adverse effects from surface chemical transformations. The mixture is modeled as a multicomponent droplet, and a convection/diffusion model, which takes into account the convective flow of evaporating material from droplet surface, is used to simulate the suspension evaporation. The model consists of several sub-models that include premixed combustion of propane-oxygen, non-premixed ethanol-oxygen combustion, modeling of multicomponent droplet breakup and evaporation, as well as heat and mass transfer between liquid droplets and gas phase.Item Open Access Numerical study of molten and semi-molten ceramic impingement by using coupled Eulerian and Lagrangian method(Elsevier, 2015-03-06) Zhu, Zihang; Kamnis, S.; Gu, SaiLarge temperature gradients are present within ceramic powder particles during plasma spray deposition due to their low thermal conductivity. The particles often impinge at the substrate in a semi-molten form which in turn substantially affects the final characteristics of the coating being formed. This study is dedicated to a novel modeling approach of a coupled Eulerian and Lagrangian (CEL) method for both fully molten and semi-molten droplet impingement processes. The simulation provides an insight to the deformation mechanism of the solid core YSZ and illustrates the freezing-induced break-up and spreading at the splat periphery. A 30 μm fully molten YSZ particle and an 80 μm semi-molten YSZ particle with different core sizes and initial velocity ranging from 100 to 240 m/s were examined. The flattened degree for both cases were obtained and compared with experimental and analytical data.