Browsing by Author "Karimi, James D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bundling ecosystem services at a high resolution in the UK: trade-offs and synergies in urban landscapes(Springer, 2021-04-29) Karimi, James D.; Corstanje, Ron; Harris, Jim A.Context Ecosystem service bundles can be defined as the spatial co-occurrence of ecosystem services in a landscape. The understanding of the delivery of multiple ecosystem services as bundles in urban areas is limited. This study modelled ecosystem services in an urban area comprising the towns of Milton Keynes, Bedford and Luton. Objectives The objectives of this study were to assess (1) how ecosystem service bundles scale at a 2 m spatial resolution and (2) identify and analyse the composition of ecosystem service bundles. Methods Six ecosystem services were modelled with the InVEST framework at a 2 m resolution. The correlations between ecosystem services were calculated using the Spearman rank correlation coefficient method. Principal Component Analysis and K-means cluster analysis were used to analyse the distributions, spatial trade-offs and synergies of multiple ecosystem services. Results The results showed that regulating services had the tendency to form trade-offs and synergies. There was a significant tendency for trade-offs between supporting service Habitat quality and Pollinator abundance. Four bundle types were identified which showed specialised areas with prevalent soil erosion with high levels in water supply, areas with high values in nutrient retention, areas with high levels in carbon storage and urban areas with pollinator abundance. Conclusions This study demonstrates the existence of synergies and trade-offs between ecosystem services and the formation of ecosystem service bundles in urban areas. This study provides a better understanding of the interactions between services and improve the management choices in ecosystem service provision in urban and landscape planning.Item Open Access Understanding the importance of landscape configuration on ecosystem service bundles at a high resolution in urban landscapes in the UK(Springer, 2021-02-10) Karimi, James D.; Corstanje, Ron; Harris, Jim A.Context Landscape structure is thought to affect the provision of ecosystem service bundles. However, studies of the influence of landscape configuration on ecosystem service trade-offs and synergies in urban areas are limited. This study used Bayesian Belief Networks to predict ecosystem service trade-offs and synergies in the urban area comprising the towns of Milton Keynes, Bedford and Luton, UK. Objectives The objectives of this study were to test (1) a Bayesian Belief Network approach for predicting ecosystem service trade-offs and synergies in urban areas and (2) assess whether landscape configuration characteristics affect ecosystem service trade-offs and synergies. Methods Bayesian Belief Network models were used to test the influence of landscape configuration on ecosystem service interactions. The outputs of a Principal Component Analysis (PCA) on six ecosystem services and landscape configuration metrics were used as response and explanatory variables, respectively. We employed Spearman’s rank correlation and principal component analysis to identify redundancies between landscape metrics. Results We found that landscape configuration affects ecosystem service trade-offs and synergies. A sensitivity analysis conducted on the principal components showed that landscape configuration metrics core area (CORE) and effective mesh size (MESH) are strong influential determinants of ecosystem service trade-offs and synergies. Conclusions This study demonstrates that landscape configuration characteristics affect ecosystem service trade-offs and synergies and that a core set of metrics could be used to assess ecosystem service (ES) trade-offs and synergies. The findings may be relevant to planning and urban design and improved ecosystem management.Item Open Access Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK(Springer, 2021-08-05) Karimi, James D.; Harris, Jim A.; Corstanje, RonContext Landscape connectivity is assumed to influence ecosystem service (ES) trade-offs and synergies. However, empirical studies of the effect of landscape connectivity on ES trade-offs and synergies are limited, especially in urban areas where the interactions between patterns and processes are complex. Objectives The objectives of this study were to use a Bayesian Belief Network approach to (1) assess whether functional connectivity drives ES trade-offs and synergies in urban areas and (2) assess the influence of connectivity on the supply of ESs. Methods We used circuit theory to model urban bird flow of P. major and C. caeruleus at a 2 m spatial resolution in Bedford, Luton and Milton Keynes, UK, and Bayesian Belief Networks (BBNs) to assess the sensitivity of ES trade-offs and synergies model outputs to landscape and patch structural characteristics (patch area, connectivity and bird species abundance). Results We found that functional connectivity was the most influential variable in determining two of three ES trade-offs and synergies. Patch area and connectivity exerted a strong influence on ES trade-offs and synergies. Low patch area and low to moderately low connectivity were associated with high levels of ES trade-offs and synergies. Conclusions This study demonstrates that landscape connectivity is an influential determinant of ES trade-offs and synergies and supports the conviction that larger and better-connected habitat patches increase ES provision. A BBN approach is proposed as a feasible method of ES trade-off and synergy prediction in complex landscapes. Our findings can prove to be informative for urban ES management.