CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kazilas, M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electrical and mechanical behaviour of copper tufted CFRP composite joints
    (SAMPE, 2021-09-29) Asareh, Mehdi; Pouchias, A.; Zitoun, A.; Yasaee, Mehdi; Kazilas, M.; Skordos, Alexandros A.
    Electrical continuity of dissimilar joints controls the current and thermal pathways during lightning strike. Tufting using carbon, glass or Kevlar fibres is a primary to introduce through thickness reinforcement for composite structures and assemblies. Replacing the conventional tuft thread material with metallic conductive wire presents an opportunity for enhancing current dissipation and deal with electrical bottlenecks across dissimilar joints. Simulation of the electro-thermo-mechanical behaviour of joints was carried out to assess the influence of metallic tufting. The finite element solver MSC.Marc was utilised. Mechanical models incorporate continuum damage mechanics (CDM) to capture progressive damage in both composite and aluminium components of the joint. The mechanical models were coupled with electrical and thermal simulations of reference and copper tufted carbon fibre epoxy composite joints to assess both the lightning strike response and mechanical robustness of the assembly as well as the improvements offered by tufting. Validation of the model is based on electrical conduction and temperature measurements alongside delamination tests.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback