CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kerry, Brian R."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of osmotic and matric potential on radial growth and accumulation of endogenous reserves in three isolates of Pochonia chlamydosporia
    (Taylor and Francis, 2009-02) Esteves, Ivania; Peteira, Belkis; Powers, S.; Magan, Naresh; Kerry, Brian R.
    For the first time, the effects of varying osmotic and matric potential on fungal radial growth and accumulation of polyols were studied in three isolates of Pochonia chlamydosporia. Fungal radial growth was measured on potato dextrose agar modified osmotically using potassium chloride or glycerol. PEG 8000 was used to modify matric potential. When plotted, the radii of the colonies were found to grow linearly with time, and regression was applied to estimate the radial growth rate (mm day-1). Samples of fresh mycelia from 25-day-old cultures were collected and the quantity (mg g-1 fresh biomass) of four polyols (glycerol, erythritol, arabitol and mannitol) and one sugar (glucose) was determined using HPLC. Results revealed that fungal radial growth rates decreased with increased osmotic or matric stress. Statistically significant differences in radial growth were found between isolates in response to matric stress (P<0.006) but not in response to osmotic stress (P=0.759). Similarly, differences in the total amounts of polyols accumulated by the fungus were found between isolates in response to matric stress (P<0.001), but not in response to osmotic stress (P=0.952). Under water stress, the fungus accumulated a combination of different polyols important in osmoregulation, which depended on the solute used to generate the stress. Arabitol and glycerol were the main polyols accumulated in osmotically modified media, whereas erythritol was the main polyol that was accumulated in media amended with PEG. The results found that Pochonia chlamydosporia may use different osmoregulation mechanisms to overcome osmotic and matric stresses.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Production of extracellular enzymes by different isolates of Pochonia chlamydosporia
    (Elsevier, 2009-08) Esteves, Ivania; Peteira, Belkis; Atkins, Simon D.; Magan, Naresh; Kerry, Brian R.
    For the first time, the specific activities of chitinases, esterases, lipases and a serine protease (VCP1) produced by different isolates of the nematophagous fungus Pochonia chlamydosporia were quantified and compared. The isolates were grown for different time periods in a minimal liquid medium or media supplemented with 1 % chitin, 0.2 % gelatin or 2 % olive oil. Enzyme-specific activities were quantified in filtered culture supernatants using chromogenic p-nitrophenyl substrates (for chitinases, lipases and esterases) and a p-nitroanilide substrate (to measure the activity of the proteinase VCP1). Additionally, information on parasitic growth (nematode egg parasitism) and saprotrophic growth (plant rhizosphere colonisation) was collected. Results showed that the production of extracellular enzymes was influenced by the type of medium (p < 0.05) in which P. chlamydosporia was grown. Enzyme activity differed with time (p < 0.05), and significant differences were found between isolates (p < 0.001) and the amounts of enzymes produced (p < 0.001). However, no significant relationships were found between enzyme activities and parasitic or saprotrophic growth using Kendall's coefficient of concordance or Spearman rank correlation coefficient. The results provided new information about enzyme production in P. chlamydosporia and suggested that the mechanisms which regulate the trophic switch in this fungus are complex and dependent on several factors.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback