CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Khelil, Meriem Ben"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enhanced pilot bioremediation of oily sludge from petroleum refinery disposal under hot-summer Mediterranean climate
    (Elsevier, 2021-10-23) Said, Olfa Ben; Cravo-Laureau, Cristiana; Armougom, Fabrice; Cipullo, Sabrina; Khelil, Meriem Ben; Yahiya, Marouen Ben Haj; Douihech, Abdeljabar; Beyrem, Hamouda; Coulon, Frederic; Duran, Robert
    Large pilot scale bioremediation approaches were implemented for the treatments of oily sludge (OS) characterised by alkaline pH (pH > 9), high concentration of metals (3% dry weight) and high total petroleum hydrocarbons content (TPH) rangingbetween 22,000 and 67,300 mg kg −1 from a Tunisian petroleum refinery. The treatments included bioaugmentation and biostimulation approaches with autochthonous isolated bacterial strains and consortia. Chemical, microbial, and ecotoxicological analyses were performed over a period of 180 days incubation. The bioremediation treatments favoured the development of Proteobacteria, Firmicutes and Bacteroidetes following an ecological succession of specialist bacterial groups, first associated to hydrocarbon degradation (e.g. Marinobacter and Alcanivorax) that resulted in a greater extent of TPH-degradation (up to 80%), and the selection of metal resistant bacteria including Hyphomonas, Phaeobacter, and Desulfuromusa. The best performances were obtained when bioaugmentation and biostimulation were combined. Over 90% of the TPH initial concentration was degraded over 180 days, which was accompanied with a 3-fold reduction of ecotoxicity. Our study demonstrates the efficacy of large pilot scale bioremediation of highly contaminated oily sludge, providing the evidence that the management of autochthonous microbial communities is of paramount importance for the success of the bioremediation process.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback