Browsing by Author "Li, Dingjun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Local residual stress evolution of highly irregular thermally grown oxide layer in thermal barrier coatings(Elsevier, 2020-12-25) Jiang, Peng; Yang, Liuyu; Sun, Yongle; Li, Dingjun; Wang, TiejunLocal residual stress in thermally grown oxide (TGO) layers is the primary cause of failure of thermal barrier coating (TBC) systems, especially TBCs prepared by air plasma spray (APS) with a highly irregular TGO. Herein, the distribution of residual stress and the evolution of the irregular TGO layer in APS TBCs were investigated as a function of oxidation time. The stress was measured from cross-sectional micrographs and converted to the actual stress inside the coatings before sectioning. The TGO exhibited significant inhomogeneity at different locations. Stress conversion occurred across the TGO thickness; the layer near the yttria-stabilised zirconia (YSZ) component exhibited compressive stress, whereas that along the bond coat was under tensile stress. The evolution of the compressive stress is also discussed. These analyses may provide a better understanding of the mechanism of APS TBCs.Item Open Access Nondestructive measurements of residual stress in air plasma‐sprayed thermal barrier coatings(Wiley, 2020-10-30) Jiang, Peng; Yang, Liuyu; Sun, Yongle; Li, Dingjun; Wang, TiejunPremature spallation of thermal barrier coatings (TBCs) is a critical issue during the service of gas turbines, and nondestructive evaluation is crucial to address this problem. Herein, a novel approach that indicates delamination by measuring the residual stress evolution of thermally grown oxide (TGO) for air plasma spraying (APS) TBCs is proposed and verified via the combination of photoluminescence piezo‐spectroscopy (PLPS) and X‐ray computed tomography. A mineral‐oil‐impregnating approach and a cold‐mount low‐shrinkage epoxy‐mounting approach are used to alleviate the signal attenuation by pores and microcracks in APS TBCs, improving the detectable PLPS signal and X‐ray transmission for stress measurement and delamination characterization, respectively. We have nondestructively measured the TGO residual stress mapping in APS TBCs and its evolution with oxidation. Furthermore, the evolution of TGO morphology and critical microcracks are obtained by X‐ray computed tomography. The synchronous evolution of TGO residual stress, TGO thickness, and critical microcracks as a function of oxidation time is obtained and correlated. The transition point, as experimentally identified, at which the TGO stress starts to drop, agrees well with the critical moment of microcrack coalescence. This directly verifies that the TBC delamination can be effectively indicated by residual stress evolution of TGO in APS TBCs.