Browsing by Author "Lin, Yujing"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Embedded large eddy simulation of transitional flow over NACA0012 aerofoil(Sage, 2020-07-06) Lin, Yujing; Wang, Jian; Savill, MarkAn accurate computation of near-field unsteady turbulent flow around aerofoil is of outstanding importance for aerofoil trailing edge noise source prediction, which is a representative of main contributor to airframe noise and fan noise in modern commercial aircraft. In this study, an embedded large eddy simulation (ELES) is fully implemented in a separation-induced transitional flow over NACA0012 aerofoil at a moderate Reynolds number. It aims to evaluate the performance of the ELES method in aerodynamics simulation for wall-bounded aerospace flow in terms of accuracy, computational cost and complexity of implementation. Some good practice is presented including the special treatments at RANS-LES interface to provide more realistic turbulence generation in LES inflow. A comprehensive validation of the ELES results is performed by comparing with the experimental data and the wall-resolved large eddy simulation results. It is concluded that the ELES method could provide sufficient accuracy in the transitional flow simulations around aerofoil. It is proved to be a promising alternative to the pure LES for industrial flow applications involving wall boundary layer due to its significant computational efficiencyItem Open Access Large eddy simulation of airfoil self-noise using openFOAM(Emerald, 2016-08-25) Jawahar, Hasan Kamliya; Lin, Yujing; Savill, Mark A.Purpose The purpose of this paper is to investigate airfoil self-noise generation and propagation by using a hybrid method based on the large-eddy simulation (LES) approach and Curle’s acoustic analogy as implemented in OpenFOAM. Design/methodology/approach Large-eddy simulation of near-field flow over a NACA6512-63 airfoil at zero angle of attack with a boundary layer trip at Rec = 1.9 × 105 has been carried out using the OpenFOAM® computational fluid dynamics (CFD) code. Calculated flow results are compared with published experimental data. The LES includes the wind tunnel installation effects by using appropriate inflow boundary conditions obtained from a RANS κ – ω SST model computation of the whole wind tunnel domain. Far-field noise prediction was achieved by an integral method based on Curle’s acoustic analogy. The predicted sound pressure levels are validated against the experimental data at various frequency ranges. Findings The numerical results presented in this paper show that the flow features around a NACA6512-63 airfoil have been correctly captured in OpenFOAM LES calculations. The mean surface pressure distributions and the local pressure peaks for the step trip setup agree very well with the experimental measurements. Aeroacoustic prediction using Curle’s analogy shows an overall agreement with the experimental data. The sound pressure level-frequency spectral analysis produces very similar data at low to medium frequency, whereas the experimentally observed levels are slightly over predicted at a higher frequency range. Practical implications This study has achieved and evaluated an alternative aeroacoustic simulation method based on the combination of LES with a simple Smagorinsky SGS model and Curle’s analogy, as implemented in the OpenFOAM CFD code. The unsteady velocity/pressure source data produced can be used for any simpler analytically based far-field noise prediction scheme. Originality/value A complete integration of the LES and Curle’s acoustic analogy for aeroacoustic simulations has been achieved in OpenFOAM. The capability and accuracy of the hybrid method are fully evaluated for high-camber airfoil self-noise predictions. Wind tunnel installation effects have been incorporated properly into the LES.Item Open Access Wall-resolved large eddy simulation for aeroengine aeroacoustic investigation(Cambridge University Press, 2017-06-22) Lin, Yujing; Vadlamani, Rao; Savill, Mark; Tucker, PaulThe work presented here forms part of a larger project on Large-Eddy Simulation (LES) of aeroengine aeroacoustic interactions. In this paper, we concentrate on LES of near-field flow over an isolated NACA0012 aerofoil at zero angle-of-attack and a chord based Reynolds number of Rec = 2 × 105. A wall-resolved compressible Numerical Large Eddy Simulation (NLES) approach is employed to resolve streak-like structures in the near-wall flow regions. The calculated unsteady pressure/velocity field will be imported into an analyticallybased scheme for far-field trailing-edge noise prediction later. The boundary-layer mean and root-mean-square (rms) velocity profiles, the surface pressure fluctuation over the aerofoil, and the wake flow development are compared with experimental data and previous computational simulations in our research group. It is found that the results from the wall-resolved compressible NLES are very encouraging as they correlate well with test data. The main features of the wall-resolved compressible NLES, as well as the advantages of such compressible NLES over previous incompressible LES performed in our research group, are also discussed. This paper will be presented at the ISABE 2017 Conference, 5-8 September 2017, Manchester, UK.Item Open Access Wall-resolved large eddy simulation over NACA0012 airfoil(Scientific & Academic Publishing Co., 2013) Lin, Yujing; Savill, Mark A.; Vadlamani, Nagabhushana RaoThe work presented here forms part of a project on Large-Eddy Simulation (LES) of aeroengine aeroacoustic interactions. In this paper we concentrate on LES of near-field flow over an isolated NACA0012 airfoil at zero angle of attack with Rec=2e5. The predicted unsteady pressure/velocity field is used in an analytically-based scheme for far-field trailing edge noise prediction. A wall resolved implicit LES or so-callednumerical Large Eddy Simulation (NLES) approach is employed to resolve streak-like structure in the near-wall flow regions. The mean and RMS velocity and pressure profile on airfoil surface and in wake are validated against experimental data and computational results from other researchers. The results of the wall-resolved NLES method are very encouraging. The effects of grid-refinement and higher-order numerical scheme on the wall-resolved NLES approach are also discussed.