Browsing by Author "Liu, Peng"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage(Elsevier, 2019-09-10) Yao, Yuechao; Xiao, Zunqin; Liu, Peng; Zhang, Shengjiao; Niu, Yuan; Wu, Hongliang; Liu, Shiyu; Tu, Wenxuan; Luo, Qi; Sial, Muhammad Aurang Zeb Gul; Zeng, Shao-Zhong; Zhang, Qi; Zou, Jizhao; Zeng, Xierong; Zhang, WenjingTwo dimensional (2D) porous carbon nanosheets (CNS) have attracted tremendous research interests in energy storage and conversion, such as supercapacitors (SCs) and lithium-sulfur batteries, because of their unique micromorphology, chemical stability and high specific surface area (SSA). Rational design and facile scalable synthesis of CNS with high SSA, low cost and ultrathin nanosheet structure is highly desired but hitherto remains a big challenge. Here, we report a novel synthesis method of 2D hierarchical porous CNS with ultrahigh SSA (2687 m2 g−1) and ultrathin structure by directly pyrolysing and activating a unique and abundant biomass sheet. The electrochemical characterisations show that the prepared CNS-4-1 materials as electrodes creates a good energy-storage capability, with the energy density being 91 Wh kg−1 for symmetric SCs in ionic liquids, which is the highest in the reported biomass-derived CNS materials for SCs applications so far. Besides, the CNS-5-1 also exhibits a high initial capacity of 1078 mAh g−1 at 0.1 C when it acted as a sulfur hosting material for lithium-sulfur batteries. More importantly, it also shows a 586 mAh g−1 reversible capacity and an approaching 100% coulombic efficiency after 500 cycles at a high rate of 1 C. These superior electrochemical properties of the CNS are mainly attributed to their unique 2D ultrathin nanosheet structure, large SSA, and reasonable hierarchical porous structure. This work not only provides a new strategy to fabricate the ultrathin CNS in large scale and low cost but also enlarges CNS materials potential applications in energy storage.Item Open Access Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitors(Royal Society of Chemistry, 2018-01-09) Yao, Yuechao; Zhang, Qi; Liu, Peng; Yu, Liang; Huang, Lin; Zeng, Shao-Zhong; Liu, Lijia; Zenga, Xierong; Zou, JizhaoIt is critical for nanoporous carbons to have a large surface area, and low cost and be readily available for challenging energy and environmental issues. The pursuit of all three characteristics, particularly large surface area, is a formidable challenge because traditional methods to produce porous carbon materials with a high surface area are complicated and expensive, frequently resulting in pollution (commonly from the activation process). Here we report a facile method to synthesize nanoporous carbon materials with a high surface area of up to 1234 m2 g−1 and an average pore diameter of 0.88 nm through a simple carbonization procedure with carefully selected carbon precursors (biomass material) and carbonization conditions. It is the high surface area that leads to a high capacitance (up to 213 F g−1 at 0.1 A g−1) and a stable cycle performance (6.6% loss over 12 000 cycles) as shown in a three-electrode cell. Furthermore, the high capacitance (107 F g−1 at 0.1 A g−1) can be obtained in a supercapacitor device. This facile approach may open a door for the preparation of high surface area porous carbons for energy storage.Item Open Access Nitrogen-doped micropores binder-free carbon-sulphur composites as the cathode for long-life lithium-sulphur batteries(Elsevier, 2018-08-10) Yao, Yuechao; Liu, Peng; Zhang, Qi; Zeng, Shao-Zhong; Chen, Shuangshuang; Zou, Guangjin; Zou, Jizhao; Zeng, Xierong; Li, XiaohuaNitrogen-doped micropores-contained carbon nanofibres (NMCNFs) were prepared by carbonizing ZIF-8 grown in liquid-phase along with electrospinning. When NMCNFs act as sulphur host materials in lithium–sulphur batteries, NMCNFs can retard the shuttle effect and dissolution of polysulfides through the synergic action of effective physical confinement to micropores and nitrogen surface chemical absorption. NMCNFs show a capacity up to 636 mAh g−1 after 500 cycles against Li anode.Item Open Access Ultrahigh-content nitrogen-decorated nanoporous carbon derived from metal organic frameworks and its application in supercapacitors(Elsevier, 2018-04-03) Zou, Jizhao; Liu, Peng; Huang, Lin; Zhang, Qi; Lan, Tongbin; Zeng, Shao-Zhong; Zeng, Xierong; Yu, Liang; Liu, Shiyu; Wu, Hongliang; Tu, Wenxuan; Yao, YuechaoSingle electric double-layer capacitors cannot meet the growing demand for energy due to their insufficient energy density. Generally speaking, the supercapacitors introduced with pseudo-capacitance by doping heteroatoms (N, O) in porous carbon materials can obtain much higher capacitance than electric double-layer capacitors. In view of above merits, in this study, nanoporous carbon materials with ultrahigh N enrichment (14.23 wt%) and high specific surface area (942 m2 g−1) by in situ introduction of N-doped MOF (ZTIF-1, Organic ligands 5-methyltetrazole/C2H4N4) were produced. It was found that as supercapacitors' electrode materials, these nanoporous carbons exhibit a capacitance as high as 272 F g-1 at 0.1 A g−1, and an excellent cycle life (almost no attenuation after 10,000 cycles.). Moreover, the symmetric supercapacitors were assembled to further investigate the actual capacitive performance, and the capacitance shows up to 154 F g-1 at 0.1 A g−1. Such excellent properties may be attributed to a combination of a high specific surface area, ultrahigh nitrogen content and hierarchically porous structure. The results shown in this study fully demonstrate that the nanoporous carbon materials containing ultrahigh nitrogen content can be used as a potential electrode material in supercapacitors.