CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lopez-Pietro, Alejandro"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning the paper: Intra-species variability in Fusarium langsethiae strains in growth and T-2/HT-2 mycotoxin production in response to climate change abiotic factors.
    (Cranfield University, 2021-06-21 08:58) Verheecke, Carol; Lopez-Pietro, Alejandro; Garcia Cela, Esther; Medina Vaya, Angel; Magan, Naresh
    The objective of this study was to evaluate the potential intra-species variability of 3 Fusarium langsethiae strains in response to extreme climate change (CC) conditions on an oat-based matrix. The impact of elevated temperature (25 vs 30-34 °C) coupled with increasing drought stress (0.98 vs 0.95 aw ) and elevated CO2 (400 vs 1000 ppm) were examined on lag phases prior to growth, growth rate, and production of the mycotoxins T-2 and HT-2 and their ratio. In comparison to the control conditions (25 °C; 0.98; 400 ppm), exposure to increased temperature (30- 34 °C), showed similar reductions in the lag phase and fungal growth rates of all 3 strains. However, with elevated CO2 a reduction in both lag phases prior to growth and growth rate occurred regardless of the aw examined. For T-2 and HT-2 mycotoxin production, T-2 showed the most intra-species variability in response to the interacting abiotic stress factors, with the 3 strains having different environmental conditions for triggering increases in T-2 production: Strain 1 produced higher T-2 toxin at 25 °C, while Strain 2 and the type strain (Fl201059) produced most at 0.98 aw /30 °C. Only Strain 2 showed a reduction in toxin production when exposed to elevated CO2 . HT-2 production was higher at 25 °C for the type strain and higher at 30-34 °C for the other two strains, regardless of the aw or CO2 level examined. The HT-2/T-2 ratio showed no significant differences due to the imposed interacting CC abiotic conditions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback