Browsing by Author "Loukopoulos, Panagiotis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Dealing with missing data for prognostic purposes(IEEE, 2017-01-19) Loukopoulos, Panagiotis; Sampath, Suresh; Pilidis, Pericles; Zolkiewski, G.; Bennett, I.; Duan, F.; Mba, DavidCentrifugal compressors are considered one of the most critical components in oil industry, making the minimization of their downtime and the maximization of their availability a major target. Maintenance is thought to be a key aspect towards achieving this goal, leading to various maintenance schemes being proposed over the years. Condition based maintenance and prognostics and health management (CBM/PHM), which is relying on the concepts of diagnostics and prognostics, has been gaining ground over the last years due to its ability of being able to plan the maintenance schedule in advance. The successful application of this policy is heavily dependent on the quality of data used and a major issue affecting it, is that of missing data. Missing data's presence may compromise the information contained within a set, thus having a significant effect on the conclusions that can be drawn from the data, as there might be bias or misleading results. Consequently, it is important to address this matter. A number of methodologies to recover the data, called imputation techniques, have been proposed. This paper reviews the most widely used techniques and presents a case study with the use of actual industrial centrifugal compressor data, in order to identify the most suitable ones.Item Open Access Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements(Elsevier, 2017-12-14) Loukopoulos, Panagiotis; Zolkiewski, George; Bennett, Ian; Sampath, Suresh; Pilidis, Pericles; Duan, Fang; Sattar, Tariq; Mba, DavidReciprocating compressors are critical components in the oil and gas sector, though their maintenance cost is known to be relatively high. Compressor valves are the weakest component, being the most frequent failure mode, accounting for almost half the maintenance cost. One of the major targets in industry is minimisation of downtime and cost, while maximising availability and safety of a machine, with maintenance considered a key aspect in achieving this objective. The concept of Condition Based Maintenance and Prognostics and Health Management (CBM/PHM) which is founded on the diagnostics and prognostics principles, is a step towards this direction as it offers a proactive means for scheduling maintenance. Despite the fact that diagnostics is an established area for reciprocating compressors, to date there is limited information in the open literature regarding prognostics, especially given the nature of failures can be instantaneous. This work presents an analysis of prognostic performance of several methods (multiple linear regression, polynomial regression, K-Nearest Neighbours Regression (KNNR)), in relation to their accuracy and variability, using actual temperature only valve failure data, an instantaneous failure mode, from an operating industrial compressor. Furthermore, a variation for Remaining Useful Life (RUL) estimation based on KNNR, along with an ensemble technique merging the results of all aforementioned methods are proposed. Prior to analysis, principal components analysis and statistical process control were employed to create T2 and Q metrics, which were proposed to be used as health indicators reflecting degradation process of the valve failure mode and are proposed to be used for direct RUL estimation for the first time. Results demonstrated that even when RUL is relatively short due to instantaneous nature of failure mode, it is feasible to perform good RUL estimates using the proposed techniques.