Browsing by Author "Lourenço, Célia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Instrumentation for quantitative analysis of volatile compounds emission at elevated temperatures. Part 1: Design and implementation(Nature Publishing Group, 2020-05-26) Lourenço, Célia; Bergin, Sarah; Hodgkinson, Jane; Francis, Daniel; Staines, Stephen E.; Saffell, John R.; Walton, Christopher; Tatam, Ralph P.A novel suite of instrumentation for the characterisation of materials held inside an air-tight tube furnace operated up to 250 °C has been developed. Real-time detection of released gases (volatile organic compounds (VOCs), CO2, NO, NO2, SO2, CO and O2) was achieved combining commercial off-the-shelf (COTS) gas sensors and sorbent tubes for further qualitative and semi-quantitative analysis by gas chromatography-mass spectrometry coupled to thermal desorption (TD-GC-MS). The test system was designed to provide a controlled flow (1000 cm3 min−1) of hydrocarbon free air through the furnace. The furnace temperature ramp was set at a rate of 5 °C min−1 with 10 min dwell points at 70 °C, 150 °C, 200 °C and 250 °C to allow time for stabilisation and further headspace sampling onto sorbent tubes. Experimental design of the instrumentation is described here and an example data set upon exposure to a gas sample is presented.Item Open Access Use of the analysis of the volatile faecal metabolome in screening for colorectal cancer(PLOS (Public Library of Science), 2015-06-18) Batty, Claire A.; Cauchi, Michael; Lourenço, Célia; Hunter, John O.; Turner, ClaireDiagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT.