CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mairaj, Tariq"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts
    (Springer Verlag, 2018-03-21) Tariq, Mateen; Nisar, Salman; Shah, Aqueel; Mairaj, Tariq; Akbar, Sohaib; Khan, Muhammad Ali; Khan, Sohaib Zia
    Composite materials are promising candidates as structural materials and substituting metals in extensive applications. Shafts are used in aerospace and automotive structures and hence replacing conventional shafts with composite material shafts is a viable option. Hollow shafts can be manufactured using filament winding technology employing hoop and helix winding layers. Filament winding technology offers several advantages such as continuous filaments through structure and capability for continuous manufacturing. Previously researchers have investigated composite shafts; however, this research elaborates the significance of type of winding layer on torsional characteristics. This paper reports the effects of carbon fiber winding layer on torsional characteristics of filament wound composite hollow shafts. Shafts were manufactured using filament winding technology with continuous carbon fiber roving and epoxy matrix material and tested using the torsional testing machine. The finite element (FE) simulations have been carried out with a general purpose commercial FE code, ABAQUS, to demonstrate shafts in torsional loading. The results revealed that values from torsional test correlate with developed finite element model. It was concluded that helix winding layer offers high hardness and more resistance to torsional forces as compared to hoop winding layer in filament wound composite shafts.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback