Browsing by Author "Masdemont, Josep J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access High-fidelity trajectory design to flyby near-Earth asteroids using CubeSats(Elsevier, 2019-11-05) Machuca, Pablo; Sanchez, Joan-Pau; Masdemont, Josep J.; Gomez, GerardFast development of CubeSat technology now enables the first interplanetary missions. The potential application of CubeSats to flyby near-Earth asteroids is explored in this paper in consideration of CubeSats' limited propulsive capabilities and systems constraints. Low-energy asteroid flyby trajectories are designed assuming a CubeSat is initially parked around to the Sun-Earth Lagrange points. High-impulse and low-thrust trajectories with realistic thrusting models are computed first in the Circular Restricted Three-Body Problem (CR3BP), and then in a high-fidelity ephemeris model. Analysis in the ephemeris model is used to confirm that trajectories computed in the CR3BP model also exist in a more realistic dynamical model, and to verify the validity of the results obtained in CR3BP analysis. A catalogue of asteroid flyby opportunities between years 2019 and 2030 is provided, with 80 m/s of available ΔV and departure from halo orbits around the first and second Sun-Earth Lagrange points (of similar size to those typically used by scientific missions). Results show that the CR3BP model can serve as an effective tool to identify reachable asteroids and can provide an initial estimation of the ΔV cost in the ephemeris model (with ±15 m/s accuracy). An impulsive maneuver model can also provide an accurate estimation of the ΔV requirement for a CubeSat equipped with a high-impulse thruster (with 4 m/s accuracy), even if its thrust magnitude is small and requires duty cycling; low-thrust ΔV requirements, however, may differ significantly from the impulsive results (±15 m/s).Item Open Access Low-energy trajectory design and autonomous navigation to flyby near-Earth asteroids using CubeSats(International Astronautical Federation (IAF), 2018-10-05) Machuca, Pablo; Sánchez, Joan-Pau; Masdemont, Josep J.; Gomez, GerardIn response to the current interest in CubeSats and potential applications for planetary exploration, this work studies the feasibility of using autonomous CubeSats to flyby near-Earth asteroids. Considering the limited performance of current propulsion systems for CubeSats, low-energy (impulsive and low-thrust) trajectories are designed to encounter near-Earth asteroids in the medium-fidelity Circular Restricted Three-Body Problem, and their existence in a high-fidelity ephemeris model is also verified. The use of large ground antennas for deep-space communications might represent a major portion of CubeSat mission budgets, and thus the feasibility of performing optical navigation to autonomously estimate and correct the trajectory of the CubeSat is also evaluated through Monte Carlo simulations. Preliminary results show that approximately 4 asteroids per year could be reached by a 3U CubeSat if deployed around the first or second Sun-Earth Lagrange points. According to the limited performance of current CubeSat components, flyby altitudes of the order of 100–500 kilometers are determined possible using only observations of the Sun and of the target asteroid for autonomous navigation.