Browsing by Author "Moore, H. E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Age estimation of Calliphora (Diptera: Calliphoridae) larvae using cuticular hydrocarbon analysis and Artificial Neural Networks(Elsevier, 2016-09-20) Moore, H. E.; Butcher, J. B.; Adam, C. D.; Day, C. R.; Falko, P. D.Cuticular hydrocarbons were extracted daily from the larvae of two closely related blowflies Calliphora vicina and Calliphora vomitoria (Diptera: Calliphoridae). The hydrocarbons were then analysed using Gas Chromatography–Mass Spectrometry (GC–MS), with the aim of observing changes within their chemical profiles in order to determine the larval age. The hydrocarbons were examined daily for each species from 1 day old larvae until pupariation. The results show significant chemical changes occurring from the younger larvae to the post-feeding larvae. With the aid of a multivariate statistical method (Principal Component Analysis and Artificial Neural Networks), samples were clustered and classified, allowing for the larval age to be established. Results from this study allowed larvae to be aged to the day with at worst, 87% accuracy, which suggests there is great potential for the use of cuticular hydrocarbons present on larvae to give an indication of their age and hence potentially a valuable tool for minimum PMI estimations.Item Open Access Juvenile hormone: production, regulation, current application in vector control and its future applications(Malaysian Society of Parasitology and Tropical Medicine, 2021-07-31) Nur Aliah, N. A.; Ab-Rahim, S.; Moore, H. E.; Heo, C. C.Juvenile hormone is an exclusive hormone found in insects which involves regulating various insect physiology. A total of eight juvenile hormones have been identified in insects which include JH 0, JH I, JH II, JH III, 4-methyl JH I (Iso- JH 0), JHB III, JHSB III, and MF. Corpora allata are the glands responsible for the production and synthesis of these hormones. They are involved in moulting, reproduction, polyethism, and behavioural regulations in different orders of insects. Factors such as diet temperatures, photoperiods, and plant compounds affect the biosynthesis and regulation of juvenile hormones. Juvenile hormones analogue is usually used to disrupt normal regulation of JH and this analogue is categorized as insect-growth regulators (IGRs) and is widely used in pest control as an alternative to chemical insecticides. Other applications of biosynthesis activities of this hormone have not been explored in the area of JHs. In this review, current applications of JHs and with an addition of their application will be discussed.