Browsing by Author "Morris, Geoffrey"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Digital twin integration in multi-agent cyber physical manufacturing systems(Elsevier, 2021-11-09) Latsou, Christina; Farsi, Maryam; Erkoyuncu, John Ahmet; Morris, GeoffreyComplex manufacturing and supply chain systems consist of concurrent labour-intensive processes and procedures with repetitive time-consuming tasks and multiple quality checks. These features may pose challenges for the efficient operation and management, while manual tasks may significantly increase human errors or near misses, having impact on the propagation of effects and parallel interactions within these systems. In order to handle the aforementioned challenges, a digital twin (DT) integrated in a multi-agent cyber-physical manufacturing system (CPMS) with the help of RFID technology is proposed. The proposed reference architecture tends to improve the trackability and traceability of complex manufacturing processes. In this research work, the interactions occurring both within a single complex manufacturing system and between multiple sites within a supply chain are considered. For the implementation of the integrated DT-CPMS, a simulation model employing the agent-based modelling technique is developed. A case study from a cryogenic supply chain in the UK is also selected to show the application and validity of the proposed digital solution. The results prove that the DT-CPMS architecture can improve system’s performance in terms of human, equipment and space utilisations.Item Open Access RFID application in a multi-agent cyber physical manufacturing system(MDPI, 2020-10-29) Farsi, Maryam; Latsou, Christina; Erkoyuncu, John Ahmet; Morris, GeoffreyIn manufacturing supply chains with labour-intensive operations and processes, individuals perform various types of manual tasks and quality checks. These operations and processes embrace engagement with various forms of paperwork, regulation obligations and external agreements between multiple stakeholders. Such manual activities can increase human error and near misses, which may ultimately lead to a lack of productivity and performance. In this paper, a multi-agent cyber-physical system (CPS) architecture with radio frequency identification (RFID) technology is presented to assist inter-layer interactions between different manufacturing phases on the shop floor and external interactions with other stakeholders within a supply chain. A dynamic simulation model in the AnyLogic software is developed to implement the CPS-RFID solution by using the agent-based technique. A case study from cryogenic warehousing in cell and gene therapy has been chosen to test the validity of the presented CPS-RFID architecture. The analyses of the simulation results show improvement in efficiency and productivity, in terms of resource time-in-system