CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mousa, Morad"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Unmanned aerial vehicle positioning using 5G new radio technology in urban environment
    (IEEE, 2023-11-10) Mousa, Morad; Al-Rubaye, Saba; Inalhan, Gokhan
    Unmanned aerial vehicles (UAVs) are becoming increasingly popular for various applications, including surveillance, monitoring, mapping, delivery, and inspection. However, their positioning capabilities in urban environments can be limited due to challenges such as Non-Line-of-Sight (NLOS) propagation, multi-path interference, and signal blockage caused by tall buildings, trees, and other obstacles, which can affect their positioning capabilities. The purpose of this paper is to provide a novel approach for UAV’s positioning based on Observed Time Difference of Arrival (OTDOA), combining 5G (NR) technology and an inertial measurement unit (IMU) to improve UAV positioning in urban environments. Integrating these technologies can improve UAV positioning and control systems by offering rapid, low-latency communication, a thorough and precise comprehension of the UAV’s surroundings and its own condition, and more accurate assessments of the UAV’s location, speed, and orientation. Simulation model shows the data from these sensors is then fused using an Extended Kalman Filter (EKF) to estimate the UAV’s position and orientation. The study shows that the proposed system delivers accurate and reliable UAV positioning in these environments, outperforming traditional methods.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback