CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nourry, Jim"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Strain self-sensing tailoring in functionalised carbon nanotubes/epoxy nanocomposites in response to electrical resistance change measurement
    (SSRN, 2020-10-26) An, Donglan; Nourry, Jim; Gharavian, Somayeh; Thakur, Vijay Kumar; Aria, Adrianus Indrat; Durazo-Cardenas, Isidro; Khaleque, Tasnuva; Nezhad, Hamed Yazdani
    Carbon nanotubes (CNTs) are inherently multifunctional, conductive and possess piezo-resistive characteristics. Aiming at the multi-functionality of materials, nanocomposites made of epoxy resin with embedded CNTs are a promising solution for strain self-sensing applications. A critical parameter to achieve repeatable and reliable measure is the CNTs dispersion state in the resin. This study investigated the effect of CNTs concentration (0.01 wt% and 0.1 wt%), with different loading of surfactant Triton X-100, (0.0%, 0.2%, 0.5% and 1.0%) on strain sensing in terms of sensitivity and linearity based on electrical resistance data. The CNTs were synthesised directly using an injection floating catalyst chemical vapor deposition (ICCVD) process and their quality was characterised by Raman spectroscopy and scanning electron microscopy. Only the epoxy modified with 0.1 wt% CNTs exhibited sufficient piezo-resistivity for the resistance measurements, and those with 0.01 wt% CNTs did not show sufficiently measurable conductivity so were excluded in our study, since their CNTs were highly entangled, and conductive network failed to be established. It was observed that, with 0.1 wt% CNTs, adding 0.5% content of the surfactant improved gauge factor. With more content of the surfactant (1.0 %), surprisingly, we observed a drop of gauge factor by the order of two. Therefore, by comparing the conductivity change between 1.0% and 0.5% surfactant, we postulated that the relatively high content surfactant has reached critical micelle concentration, and negatively affects CNTs dispersion state. The research presented in this article shows that moderate content of surfactant could improve piezo-resistivity gauge factor while excessive surfactant could cause adverse effect.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback