CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ozdemir, Orhan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A certifiable AI-based braking control framework for landing using scientific machine learning
    (IEEE, 2024-09-29) Uzun, Mevlut; Celik, Ugurcan; Guner, Guney; Ozdemir, Orhan; Inalhan, Gokhan
    This paper proposes an AI-based braking control system for aircraft during landing. Utilizing scientific machine learning, we train an agent to apply the most effective braking strategy under various landing conditions. This approach ensures physically consistent outputs by grounding the algorithm in the principles of landing physics. Our results demonstrate that the aircraft can successfully decelerate without skidding across all runway conditions and landing speeds. Additionally, the algorithm maintains performance and safety even when brake performance degradation and initial yaw angles are introduced. This robustness is crucial for the certification of AI in safety-critical systems, as the proposed framework provides a reliable and effective solution.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback