Browsing by Author "Paissoni, Eleonora"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Demonstration of anaerobic membrane bioreactors for resource recovery in wastewater treatment applications.(Cranfield University, 2023-08) Paissoni, Eleonora; Soares, Ana; Jefferson, BrucePilot-scale studies on anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment at low temperature (<20°C) showed promising results, however, their application at larger scale is still relatively unknown. This study investigated the scalability of an AnMBR, comprising an upflow anaerobic sludge blanket (UASB) reactor and an external ultrafiltration membrane tank, operating AnMBRs both at pilot- and demonstration-scale and identifying how sludge physical and microbiological properties, membrane design and variations in influent temperature, chemical oxygen demand (COD) and sulphate (SO₄) influence the successful scale-up of the technology. At pilot-scale, the source and adaptation of the inoculum and the orientation and arrangement of the membrane fibres did not affect the performance of the reactors. However, the use of horizontal hollow fibres led to lower gas sparging energy consumption compared to a vertical module. The membrane improved removal efficiencies (from 49-57% to 88-92% COD removal), solids hydrolysed (from 0.82-0.86 g/(L∙d) to 1.57-1.87 g/(L∙d)) and methane production (from 2.3-2.7 L/d to 5.3-5.7 L/d). Methanogenesis percentages were linearly correlated to hydrolysis, which in turn was affected by temperature and inversely correlated to the Sauter mean diameter of the sludge particles. Higher substrate affinities were found at the operational temperature of the reactors (15-20°C), while hydrolytic enzyme activities in UASB reactors and AnMBRs were higher at 37°C. Methane was mainly dissolved in the effluent (70-90%), implying the need for a recovery process to improve the net energy balance. At demonstration-scale, low COD:SO4 ratio caused competition between sulphate-reducing bacteria and methanogens, leading to a decrease in methane yield. This study proved that AnMBRs are a suitable technology to treat municipal wastewater, however site- specific control strategies to manage fouling and sulphate and appropriate post- treatments are necessary to ensure the successful application of the process at full-scale in temperate climates and the recovery of useful resources from wastewater.Item Open Access Dynamics of bubbles under stochastic pressure forcing(American Physical Society, 2021-02-23) Vesipa, Riccardo; Paissoni, Eleonora; Manes, Costantino; Ridolfi, LucaSeveral studies have investigated the dynamics of a single spherical bubble at rest under a nonstationary pressure forcing. However, attention has almost always been focused on periodic pressure oscillations, neglecting the case of stochastic forcing. This fact is quite surprising, as random pressure fluctuations are widespread in many applications involving bubbles (e.g., hydrodynamic cavitation in turbulent flows or bubble dynamics in acoustic cavitation), and noise, in general, is known to induce a variety of counterintuitive phenomena in nonlinear dynamical systems such as bubble oscillators. To shed light on this unexplored topic, here we study bubble dynamics as described by the Keller-Miksis equation, under a pressure forcing described by a Gaussian colored noise modeled as an Ornstein-Uhlenbeck process. Results indicate that, depending on noise intensity, bubbles display two peculiar behaviors: when intensity is low, the fluctuating pressure forcing mainly excites the free oscillations of the bubble, and the bubble's radius undergoes small amplitude oscillations with a rather regular periodicity. Differently, high noise intensity induces chaotic bubble dynamics, whereby nonlinear effects are exacerbated and the bubble behaves as an amplifier of the external random forcingItem Open Access Hydrolytic enzyme activity in high-rate anaerobic reactors treating municipal wastewater in temperate climates(Elsevier, 2024-06-17) Paissoni, Eleonora; Jefferson, Bruce; Soares, AnaParticulate matter hydrolysis is the bottleneck in anaerobic treatment of municipal wastewater in temperate climates. Low temperatures theoretically slow enzyme-substrate interactions, hindering utilization kinetics, but this remains poorly understood. β-glucosidase, protease, and lipase activities were evaluated in two pilot-scale upflow anaerobic sludge blanket (UASB) reactors, inoculated with different sludges and later converted to anaerobic membrane bioreactors (AnMBRs). Despite similar methane production and solids hydrolysis rates, significant differences emerged. Specific activity peaked at 37 °C, excluding the predominance of psychrophilic enzymes. Nevertheless, the Michaelis-Menten constant (Km) indicated high enzyme-substrate affinity at the operational temperature of 15–20 °C, notably greater in AnMBRs. It is shown, for the first time, that different seed sludges can equally adapt, as hydrolytic enzymatic affinity to the substrate reached similar values in the two reactors at the operational temperature and identified that membrane ultrafiltration impacted hydrolysis by a favourable enzyme Michaelis-Menten constant.