CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pratt, M. J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The free-molecule flow characteristics of concave surfaces
    (College of Aeronautics, 1963-06) Pratt, M. J.
    The problem of free molecule flow over concave surfaces is investigated, and general equations formulated for the lift, drag, and heat transfer characteristics of such surfaces. The effect of multiple reflections is taken into account by use of the Clausing integral equation to determine the redistribution of molecular flux over the surface. It is assumed that emission of molecules from the surface is purely diffuse, and that the reflected molecules are perfectly accommodated to the surface conditions. The equations obtained are solved for the cases of (i) an infinitely long circular cylindrical arc and (ii) a section of a spherical surface, at hyperthermal velocities. It is found that under the above conditions the local heat transfer characteristics are the same as those of the corresponding convex surface, the total heat transfer being independent of the geometry of the surface. As drag devices, the concave surfaces examined prove only slightly more effective than a flat plate at similar incidence, and as a generator of lift the cylindrically cambered plate is significantly inferior to the flat plate at similar incidence.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback