CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Reuben, Robert L."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Brittle ductile transition during diamond turning of single crystal silicon carbide
    (Elsevier Science B.V., Amsterdam., 2013-02-28T00:00:00Z) Goel, Saurav; Luo, Xichun; Comley, Paul; Reuben, Robert L.; Cox, Andrew
    In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/sec on an ultra precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM) (FIB- FEI Quanta 3D FEG) was used to examine the cutting tool. A surface finish of Ra 9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 Km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon and germanium etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which is normally considered as a prerequisite to ductile-regime machining, may not well be realized during machining of polycrystalline materials, yet, ductile-regime exploitation is possible.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback