Browsing by Author "Rolt, Andrew Martin"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Open Access Abating CO2 and non-CO2 emissions with hydrogen propulsion(Cambridge University Press (CUP), 2024-04-02) Mourouzidis, Christos; Singh, G.; Sun, X.; Huete, Jon; Nalianda, Devaiah; Nikolaidis, Theoklis; Sethi, Vishal; Rolt, Andrew Martin; Goodger, E.; Pilidis, PericlesThis contribution focuses on the abatement with hydrogen of CO2 and non-CO2 emissions. It is agenda-setting in two respects. Firstly, it challenges the globally accepted hydrocarbon sustainable aviation fuel (SAF) pathway to sustainability and recommends that our industry accelerates along the hydrogen pathway to ‘green’ aviation. Secondly, it reports a philosophical and analytical investigation of appropriate accuracy on abatement strategies for nitrogen oxides and contrails of large hydrogen airliners. For the second contribution, a comparison is made of nitrogen oxide emissions and contrail avoidance options of two hydrogen airliners and a conventional airliner of similar passenger capacity. The hydrogen aircraft are representative of the first and second innovation waves where the main difference is the weight of the hydrogen tanks. Flights of 1000, 2000, 4000 and 8000 nautical miles are explored. Cranfield’s state of the art simulators for propulsion system integration and gas turbine performance (Orion and Turbomatch) were used for this. There are two primary contributions to knowledge. The first is a new set of questions to be asked of SAF and hydrogen decarbonising features. The second is the quantification of the benefits from hydrogen on non-CO2 emissions. For the second generation of long-range hydrogen-fuelled aircraft having gas turbine propulsion, lighter tanks (needing less thrust and lower gas temperatures) are anticipated to reduce NOx emissions by over 20%; in the case of contrails, the preliminary findings indicate that regardless of the fuel, contrails could largely be avoided with fuel-burn penalties of a few per cent. Mitigating action is only needed for a small fraction of flights. For conventional aircraft this penalty results in more CO2, while for hydrogen aircraft the additional emission is water vapour. The conclusion is that our research community should continue to consider hydrogen as the key ‘greening’ option for aviation, notwithstanding the very significant costs of transition.Item Open Access An analysis of civil aviation industry safety needs for the introduction of liquid hydrogen propulsion technology(ASME, 2019-11-05) Benson, C. M.; Ingram, J. M.; Battersby, P. N.; Mba, David; Sethi, Vishal; Rolt, Andrew MartinOver the next few decades air travel is predicted to grow, with international agencies, manufacturers and governments predicting a considerable increase in aviation use. However, based on current fuel type, International Civil Aviation Organization (ICAO) project emissions from aviation are estimated to be seven to ten times higher in 2050 than in 1990. These conflicting needs are problematic and have led to the EU Flightpath 2050 targeting dramatic emissions reductions for the sector (75% CO2, 90% NOX by 2050). One proposed solution, decreasing carbon emissions without stunting the increase in air travel, is hydrogen propulsion; a technology with clear environmental benefits. However, enabling the safe application of this fuel to aviation systems and industrial infrastructure would be a significant challenge. High-profile catastrophic incidents involving hydrogen, and the flammable and cryogenic nature of liquid hydrogen (LH2) have led to its reputation as a more dangerous substance than existing or alternative fuels. But, where they are used (in industry, transport, energy), with sufficient protocols, hydrogen can have a similar level of safety to other fuels. A knowledge of hazards, risks and the management of these becomes key to the integration of any new technology. Using assessments, and a gap analysis approach, this paper examines the civil aviation industry requirements, from a safety perspective, for the introduction of LH2 fuel use. Specific proposed technology assessments are used to analyze incident likelihood, consequence impact, and ease of remediation for hazards in LH2 systems, and a gap analysis approach is utilized to identify if existing data is sufficient for reliable technology safety assessment. Outstanding industry needs are exposed by both examining challenges that have been identified in transport and industrial areas, and by identifying the gaps in current knowledge that are preventing credible assessment, reliable comparison to other fuels and the development of engineering systems. This paper demonstrates that while hydrogen can be a safe and environmentally friendly fuel option, a significant amount of work is required for the implementation of LH2 technology from a mass market perspective.Item Open Access Assessment of the BWB aircraft for military transport(Emerald, 2020-04-06) Kissoon, Sajal; Mastropierro, Francesco; Nalianda, Devaiah; Rolt, Andrew Martin; Sethi, BobbyPurpose The growth in air mobility, rising fuel prices and ambitious targets in emission reduction are some of the driving factors behind research towards more efficient aircraft. The purpose of this paper is to assess the application of a blended wing body (BWB) aircraft configuration with turbo-electric distributed propulsion in the military sector and to highlight the potential benefits that could be achieved for long-range and heavy payload applications. Design/methodology/approach Mission performance has been simulated using a point-mass approach and an engine performance code (TURBOMATCH) for the propulsion system. Payload-range charts were created to compare the performance of a BWB aircraft with various different fuels against the existing Boeing 777-200LR as a baseline. Findings When using kerosene, an increase in payload of 42 per cent was achieved but the use of liquefied natural gas enabled a 50 per cent payload increase over a design range of 7,500 NM. When liquid hydrogen (LH2) is used, the range may be limited to about 3,000 NM by the volume available for this low-density fuel, but the payload at this range could be increased by 137 per cent to 127,000 kg. Originality/value The results presented to estimate the extent to which the efficiency of military operations could be improved by making fewer trips to transport high-density and irregular cargo items and indicate how well the proposed alternatives would compare with present military aircraft. There are no existing NATO aircraft with such extended payload and range capacities. This paper, therefore, explores the potential of BWB aircraft with turbo-electric distributed propulsion as effective military transports.Item Open Access Cryogenic fuel storage modelling and optimisation for aircraft applications(American Society of Mechanical Engineers, 2021-09-16) Rompokos, Pavlos; Rolt, Andrew Martin; Nalianda, Devaiah; Sibilli, Thierry; Benson, ClaireDesigning commercial aircraft to use liquid hydrogen (LH2) is one way to substantially reduce their life-cycle CO2 emissions. The merits of hydrogen as an aviation fuel have long been recognized, however, the handling of a cryogenic fuel adds complexity to aircraft and engine systems, operations, maintenance and storage. The fuel tanks could account for 8–10% of an aircraft’s operating empty weight, so designing them for the least added weight is of high significance. This paper describes the heat transfer model developed in the EU Horizon 2020 project that is used to predict heat ingress to a cylindrical tank with hemispherical end caps with external foam insulation. It accounts for heat transfer according to the state of the tank contents, the insulation material properties, the environment, and the dimensions of the tank. The model also estimates the rate of pressure change according to the state of the fuel and the rate at which fuel is withdrawn from the tank. In addition, a methodology is presented, that allows for tank sizing taking into consideration the requirements of a design flight mission, the maximum pressure developed, and the fuel evaporated. Finally, the study demonstrates how to select optimal insulation material and thickness to provide the lightest design for the cases where no gaseous hydrogen is extracted, and where some hydrogen gas is extracted during cruise, the latter giving gravimetric efficiencies as high as 74%.Item Open Access The efficiency of a pulsed detonation combustor-axial turbine integration(Elsevier, 2018-09-05) Xisto, Carlos M.; Petit, Olivier; Grönstedt, Tomas; Rolt, Andrew Martin; Lundbladh, Anders; Paniagua, GuillermoThe paper presents a detailed numerical investigation of a pulsed detonation combustor (PDC) coupled with a transonic axial turbine stage. The time-resolved numerical analysis includes detailed chemistry to replicate detonation combustion in a stoichiometric hydrogen–air mixture, and it is fully coupled with the turbine stage flow simulation. The PDC–turbine performance and flow variations are analyzed for different power input conditions, by varying the system purge fraction. Such analysis allows for the establishment of cycle averaged performance data and also to identify key unsteady gas dynamic interactions occurring in the system. The results obtained allow for a better insight on the source and effect of different loss mechanisms occurring in the coupled PDC–turbine system. One key aspect arises from the interaction between the non-stationary PDC outflow and the constant rotor blade speed. Such interaction results in pronounced variations of rotor incidence angle, penalizing the turbine efficiency and capability of generating a quasi-steady shaft torque.Item Open Access Enabling cryogenic hydrogen-based CO2-free air transport: meeting the demands of zero carbon aviation(IEEE, 2022-06-02) Sethi, Vishal; Sun, Xiaoxiao; Nalianda, Devaiah; Rolt, Andrew Martin; Holborn, Paul; Wijesinghe, Charith; Xisto, Carlos; Jonsson, Isak; Grönstedt, Tomas; Ingram, James; Lundbladh, Anders; Isikveren, Askin; Williamson, Ian; Harrison, Tom; Yenokyan, AnnaFlightpath 2050 from the European Union (EU) sets ambitious targets for reducing the emissions from civil aviation that contribute to climate change. Relative to aircraft in service in year 2000, new aircraft in 2050 are to reduce CO2 emissions by 75% and nitrogen oxide (NOx) emissions by 90% per passenger kilometer flown. While significant improvements in asset management and aircraft and propulsion-system efficiency and are foreseen, it is recognized that the Flightpath 2050 targets will not be met with conventional jet fuel. Furthermore, demands are growing for civil aviation to target zero carbon emissions in line with other transportation sectors rather than relying on offsetting to achieve “net zero.” A more thorough and rapid greening of the industry is seen to be needed to avoid the potential economic and social damage that would follow from constraining air travel. This requires a paradigm shift in propulsion technologies. Two technologies with potential for radical decarbonization are hydrogen and electrification. Hydrogen in some form seems an inevitable solution for a fully sustainable aviation future. It may be used directly as a fuel or combined with carbon from direct air capture of CO2 or other renewable carbon sources, to synthesize drop-in replacement jet fuels for existing aircraft and engines. As a fuel, pure hydrogen can be provided as a compressed gas, but the weight of the storage bottles limits the practical aircraft ranges to just a few times that is achievable with battery power. For longer ranges, the fuel needs to be stored at lower pressures in much lighter tanks in the form of cryogenic liquid hydrogen (LH2).Item Open Access Enhancing aero engine performance through synergistic combinations of advanced technologies.(2019-07) Rolt, Andrew Martin; Sethi, Vishal; Nalianda, DevaiahBy 2050 the evolutionary approach to aero engine research and development will no longer be able to maintain historic rates of performance improvement. Future geared fan and open rotor engines promise increased propulsive efficiency and reduced noise, but will need to incorporate new technologies to improve core thermal efficiency in order to meet the ambitious fuel-burn and emissions targets set by ACARE in Flightpath 2050. In the face of increasing air traffic, radical new approaches will be needed to minimize the impact of aviation on the environment. A long-term vision is required. This PhD project investigates the potential of innovative propulsion technologies for civil aviation. Candidate technologies include topping and bottoming cycles, secondary combustion, intercooling and recuperation. The reported research investigates potential synergies between these advanced core technologies that when integrated together should give a significant fuel burn reduction relative to a more-conventional year-2050 ‘reference’ Brayton-cycle turbofan. Spreadsheet models have been used to quantify performance and estimate the weight and fuel burn savings for each new engine cycle. Further models were created to investigate preferred topping and bottoming cycle arrangements. NOx emissions are estimated for engines with rich-quench-lean (RQL) or lean-direct-injection (LDI) combustors. The correlation for future LDI combustor NOx emissions was selected following a review of recent LDI combustor research and a detailed study of alternative options. Increasingly aerodynamically efficient and lighter weight aircraft with more efficient engines will have lower thrust requirements. Advanced engine cycles also generally increase core specific power and reduce core mass flow, so future engines will have smaller turbo-machines that will tend to have lower component efficiencies. Therefore a preliminary study investigated the effects of thrust-scaling on the efficiency of the reference turbofan and possible high-OPR intercooled engines, since these could have very small core components. Novel core-component designs and engine architectures can minimize these penalties. Positive-displacement topping-cycle machines and reverse-flow-core engine layouts should help to maintain component efficiency and improve SFC, but low weight and low drag are also essential to minimize fuel burn. Therefore weight assessments of the advanced engine designs were made, and fuel-burn exchange rates used to quantify expected mission-level CO₂ reductions. Following a qualitative assessment of synergies between potential advanced technologies, an engine that combines intercooling, a topping cycle, secondary combustion and an open-air-cycle bottoming cycle was selected for detailed study. While each of these technologies has been researched previously, the contribution and value that each advanced core technology could bring to the whole in a large geared turbofan has not so far been reported. The approach initiated was to model a series of engines omitting each technology in turn and this scheme has been partially realized. The modelled topping-cycle technology uses six nutating-disc modules as a replacement for conventional combustors, high pressure compressors and turbines. A nutating-disc core module concept design led to the creation of a display model that was shown on the ULTIMATE project stand at the 2018 Farnborough International Air Show. The selected cycle combining all four technologies should reduce SFC by about 15% relative to the reference year-2050 turbofan and is assessed to reduce fuel burn by up to 18.5% in a long-range aircraft. An engine with intercooling, intra-turbine combustion and a bottoming cycle reduces SFC by about 6%, and an engine that is simply intercooled reduces SFC by about 3%. The topping cycle gives the biggest potential thermal efficiency improvement, but nutating-disc technology presents very significant design challenges for large aero engines, particularly with regard to internal sealing and bearing loads. Therefore it is recommended that alternative topping-cycle technologies should be researched for long-term aero engine performance improvements. A further study shows the effect of the target 15% reduction in fuel burn on in-flight CO2 emissions by the civil aviation fleet under various traffic-growth scenarios.Item Open Access Liquefied natural gas for civil aviation(MDPI, 2020-11-13) Rompokos, Pavlos; Kissoon, Sajal; Roumeliotis, Ioannis; Nalianda, Devaiah; Nikolaidis, Theoklis; Rolt, Andrew MartinThe growth in air transport and the ambitious targets in emission reductions set by advisory agencies are some of the driving factors behind research towards new fuels for aviation. Liquefied Natural Gas (LNG) could be both environmentally and economically beneficial. However, its implementation in aviation has technical challenges that needs to be quantified. This paper assesses the application of LNG in civil aviation using an integrated simulation and design framework, including Cranfield University’s aircraft performance tool, Orion, and engine performance simulation tool Turbomatch, integrated with an LNG tank sizing module and an aircraft weight estimation module. Changes in tank design, natural gas composition, airframe changes, and propulsion system performance are assessed. The performance benefits are quantified against a Boeing 737–800 aircraft. Overall, LNG conversion leads to a slightly heavier aircraft in terms of the operating weight empty (OWE) and maximum take-off weight (MTOW). The converted aircraft has a slightly reduced range compared to the conventional aircraft when the maximum payload is considered. Compared to a conventional aircraft, the results indicate that although the energy consumption is increased in the case of LNG, the mission fuel mass is decreased and CO2 emissions are reduced by more than 15%. These benefits come with a significant reduction in fuel cost per passenger, highlighting the potential benefits of adopting LNG for aviationItem Open Access Modeling geared turbofan and open rotor engine performance for year-2050 long-range and short-range aircraft(ASME, 2019-10-04) Mastropierro, Francesco Saverio; Sebastiampillai, Joshua; Jacob, Florian; Rolt, Andrew MartinThe paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimised and compared with 'baseline' year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 'reference' engines, highlights trade-offs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and non-linear trade factors. The final turbofan has an optimised design-point bypass ratio of 16.8, and a maximum overall pressure ratio of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometre compared to the respective 'baseline' engine-aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometre relative to its baseline.Item Open Access Performance of a supercritical CO2 bottoming cycle for aero applications(MDPI, 2017-03-06) Jacob, Florian; Rolt, Andrew Martin; Sebastiampillai, Joshua Marius; Sethi, Vishal; Belmonte, Mathieu; Cobas, PedroBy 2050, the evolutionary approach to aero engine research may no longer provide meaningful returns on investment, whereas more radical approaches to improving thermal efficiency and reducing emissions might still prove cost effective. One such radical concept is the addition of a secondary power cycle that utilizes the otherwise largely wasted residual heat in the core engine’s exhaust gases. This could provide additional shaft power. Supercritical carbon dioxide closed-circuit power cycles are currently being investigated primarily for stationary power applications, but their high power density and efficiency, even for modest peak cycle temperatures, makes them credible bottoming cycle options for aero engine applications. Through individual geometric design and performance studies for each of the bottoming cycle’s major components, it was determined that a simple combined cycle aero engine could offer a 1.9% mission fuel burn benefit over a state-of-the-art geared turbofan for the year 2050. However, the even greater potential of more complex systems demands further investigation. For example, adding inter-turbine reheat (ITR) to the combined cycle is predicted to significantly improve the fuel burn benefit.Item Open Access Preliminary analysis of compression system integrated heat management concepts using LH2-based parametric gas turbine model(MDPI, 2022-04-14) Abedi, Hamidreza; Xisto, Carlos M.; Jonsson, Isak; Grönstedt, Tomas; Rolt, Andrew MartinThe investigation of the various heat management concepts using LH2 requires the development of a modeling environment coupling the cryogenic hydrogen fuel system with turbofan performance. This paper presents a numerical framework to model hydrogen-fueled gas turbine engines with a dedicated heat-management system, complemented by an introductory analysis of the impact of using LH2 to precool and intercool in the compression system. The propulsion installations comprise Brayton cycle-based turbofans and first assessments are made on how to use the hydrogen as a heat sink integrated into the compression system. Conceptual tubular compact heat exchanger designs are explored to either precool or intercool the compression system and preheat the fuel to improve the installed performance of the propulsion cycles. The precooler and the intercooler show up to 0.3% improved specific fuel consumption for heat exchanger effectiveness in the range 0.5–0.6, but higher effectiveness designs incur disproportionately higher pressure losses that cancel-out the benefits.Item Open Access Preliminary design framework for the power gearbox in a contra-rotating open rotor(ASME, 2020-12-18) San Benito Pastor, Diana G.; Nalianda, Devaiah; Sethi, Vishal; Midgley, Ron; Rolt, Andrew Martin; Block Novelo, David A.This study introduces an innovative approach to sizing a differential planetary gearbox for a counter-rotating open rotor application. An updated methodology is proposed for the design of maximum load capacity gears based on the power transmitted, durability and space-envelope requirements of the application. The reported methodology has been validated by comparing the results to published data, demonstrating a maximum difference of 0.6% in geometry. Parametric analyses have also been performed to assess the impact of the design assumptions on gearbox dimensional trends. The proposed methodology enables the assessment of the impact of the preliminary transmission system design on engine performance and general arrangement. The characteristics of the gearset lead to an unequal torque split between output shafts (i.e. the propeller shafts). Given the design assumptions made, the study indicates that valid torque ratios would lie between 1.1 and 1.33. The impact of the torque ratio on the size of the gearbox has been analysed for equal rotational speeds and for different speeds between the output shafts. The study established that the transmission system design needs to be considered prior to selection of the torque ratio at engine design levelItem Open Access Scale effects on conventional and intercooled turbofan engine performance(Cambridge University Press, 2017-06-08) Rolt, Andrew Martin; Sethi, Vishal; Jacob, Florian; Sebastiampillai, Joshua; Xisto, Carlos M.; Grönstedt, Tomas; Raffaelli, LorenzoNew commercial aero engines for 2050 are expected to have lower specific thrusts for reduced noise and improved propulsive efficiency, but meeting the ACARE Flightpath 2050 fuel-burn and emissions targets will also need radical design changes to improve core thermal efficiency. Intercooling, recuperation, inter-turbine combustion and added topping and bottoming cycles all have the potential to improve thermal efficiency. However, these new technologies tend to increase core specific power and reduce core mass flow, giving smaller and less efficient core components. Turbine cooling also gets more difficult as engine cores get smaller. The core-size-dependent performance penalties will become increasingly significant with the development of more aerodynamically efficient and lighter-weight aircraft having lower thrust requirements. In this study the effects of engine thrust and core size on performance are investigated for conventional and intercooled aeroengine cycles. Large intercooled engines could have 3%–4% SFC improvement relative to conventional cycle engines, while smaller engines may only realize half of this benefit. The study provides a foundation for investigations of more complex cycles in the EU Horizon 2020 ULTIMATE programme. This paper will be presented at the ISABE 2017 Conference, 5-8 September 2017, Manchester, UK.Item Open Access Synergistic technology combinations for future commercial aircraft using liquid hydrogen(American Society of Mechanical Engineers, 2021-01-11) Rompokos, Pavlos; Rolt, Andrew Martin; Nalianda, Devaiah; Isikveren, Askin T.; Senné, Capucine; Grönstedt, Tomas; Abedi, HamidrezaLiquid hydrogen (LH2) has long been seen as a technically feasible fuel for a fully sustainable greener aviation future. The low density of the cryogenic fuel would dictate the redesign of commercial aircraft to accommodate the large tanks, which are unlikely to be integrated within the whole internal volume of the wing. In the ENABLEH2 project, the morphological aspects of a LH2 aircraft design are discussed and a methodology for rapid concept comparative assessment is proposed. An exercise is then carried on to down-select short-to-medium range (SMR) and long-range (LR) concepts, able to carry 200 passengers for 3000 nmi and 414 passengers for 7500 nmi respectively. The down-selection process was split into two phases with the first considering 31 potential airframe architectures and 21 propulsion-system arrangements. The second phase made the final down-selections from a short-list of nine integrated design concepts that were ranked according to 34 criteria, relating to operating cost, revenue, noise and safety. Upon completion of the process, a tube and wing design with the tanks integrated into extended wing roots, and a blended-wing-body design were selected as the best candidates for the SMR and LR applications respectively. Both concepts feature distributed propulsion to maximise synergies from integrating the airframe and propulsion systems.Item Open Access Synergistic technology combinations for future commercial aircraft using liquid hydrogen(American Society of Mechanical Engineers, 2021-01-13) Rompokos, Pavlos; Rolt, Andrew Martin; Nalianda, Devaiah; Isikveren, Askin T.; Senné, Capucine; Gronstedt, Tomas; Abedi, HamidrezaLiquid hydrogen (LH2) has long been seen as a technically feasible fuel for a fully sustainable greener aviation future. The low density of the cryogenic fuel would dictate the redesign of commercial aircraft to accommodate the large tanks, which are unlikely to be integrated within the whole internal volume of the wing. In the ENABLEH2 project, the morphological aspects of a LH2 aircraft design are discussed and a methodology for rapid concept comparative assessment is proposed. An exercise is then carried on to down-select short-to-medium range (SMR) and long-range (LR) concepts, able to carry 200 passengers for 3000 nmi and 414 passengers for 7500?nmi respectively. The down-selection process was split into two phases with the first considering 31 potential airframe architectures and 21 propulsion-system arrangements. The second phase made the final down-selections from a short-list of nine integrated design concepts that were ranked according to 34 criteria, relating to operating cost, revenue, noise and safety. Upon completion of the process, a tube and wing design with the tanks integrated into extended wing roots, and a blended-wing-body design were selected as the best candidates for the SMR and LR applications respectively. Both concepts feature distributed propulsion to maximise synergies from integrating the airframe and propulsion systems.Item Open Access Thermodynamic analysis of nutating disc engine topping cycles for aero-engine applications(Elsevier, 2019-05-31) Sebastiampillai, Joshua; Rolt, Andrew Martin; Jacob, Florian; Nalianda, Devaiah; Sethi, VishalWithin the next thirty years the evolutionary approach to aero engine development will struggle to keep abreast with increasingly stringent environmental targets. Therefore radical approaches to aero-engine development in terms of energy savings need to be considered. One particular concept involves the inclusion of a pressure-rise combustion system, within the architecture of an aero-engine, to provide additional shaft power. The nutating disc engine concept is a strong contender due to its power density. The feasibility of the nutating disc engine has been previously investigated for unmanned vehicle applications. However, this paper investigates the performance benefits of incorporating a nutating disc core in a larger geared open rotor engine for a potential entry in to service in 2050. In addition, a methodology is presented to estimate the size and weight of the nutating disc core. This methodology is pivotal in determining the overall performance of the novel aero-engine cycle. The outcome of this study predicts a potential 9.4% fuel burn benefit, over a state of the art geared open rotor in the year 2050. In addition, the sensitivity of the nutating disc design variables highlights the possible fuel burn benefits compared against a comparable year-2000 aircraft mission.