Browsing by Author "Rupani, Parveen Fatemeh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Biohydrogen production and quantitative determination of monosaccharide production using hyperthermophilic anaerobic fermentation of corn stover(MDPI, 2024-04-04) Rupani, Parveen Fatemeh; Sakrabani, Ruben; Sadaqat, Beenish; Shao, WeilanSecond-generation biofuels from lignocellulosic biomass remain critical and require several challenges due to lignin compounds’ inefficient degradation and recalcitrate characteristics. In this regard, this study focuses on enzymatic technology as a promising treatment that is beneficial in breaking down the biomass’s hemicellulose and cellulosic parts. Thermostable bacterial species owe thermostable enzymes that are able to degrade complex carbohydrate compounds and produce efficient hydrogen production. The present study investigates the direct utilization of ligninolytic enzymes such as cellulase and xylanase derived from the hyperthermophilic bacteria Thermotoga maritima (ATCC 43589 strain). The results show that xylanase and cellulase enzymes extracted from Thermotoga maritima could depolymerize the lignin bonds of corn stover substrate and release monomers such as Galactose in the media. In conclusion, this study can open a new advanced research window on directly applying a hyperthermophilic consortium of enzymes capable of hydrolyzing lignocellulose material toward hydrogen production.Item Open Access Recent advances in the adsorption of different pollutants from wastewater using carbon-based and metal-oxide nanoparticles(MDPI, 2024-12-02) Rezania, Shahabaldin; Darajeh, Negisa; Rupani, Parveen Fatemeh; Mojiri, Amin; Kamyab, Hesam; Taghavijeloudar, MohsenIn recent years, nanomaterials have gained special attention for removing contaminants from wastewater. Nanoparticles (NPs), such as carbon-based materials and metal oxides, exhibit exceptional adsorption capacity and antimicrobial properties for wastewater treatment. Their unique properties, including reactivity, high surface area, and tunable surface functionalities, make them highly effective adsorbents. They can remove contaminants such as organics, inorganics, pharmaceuticals, medicine, and dyes by adsorption mechanisms. In this review, the effectiveness of different types of carbon-based NPs, including carbon nanotubes (CNTs), graphene-based nanoparticles (GNPs), carbon quantum dots (CQDs), carbon nanofibers (CNFs), and carbon nanospheres (CNSs), and metal oxides, including copper oxide (CuO), zinc oxide (ZnO), iron oxide (Fe2O3), titanium oxide (TiO2), and silver oxide (Ag2O), in the removal of different contaminants from wastewater has been comprehensively evaluated. In addition, their synthesis methods, such as physical, chemical, and biological, have been described. Based on the findings, CNPs can remove 75 to 90% of pollutants within two hours, while MONPs can remove 60% to 99% of dye in 150 min, except iron oxide NPs. For future studies, the integration of NPs into existing treatment systems and the development of novel nanomaterials are recommended. Hence, the potential of NPs is promising, but challenges related to their environmental impact and their toxicity must be considered.