CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Russo, Giuseppe"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Selective-exhaust gas recirculation for CO2 capture using membrane technology
    (Elsevier, 2017-11-10) Russo, Giuseppe; Prpich, George; Anthony, Edward J.; Montagnaro, Fabio; Jurado Pontes, Nelia; Di Lorenzo, Giuseppina; Darabkhani, Hamidreza Gohari
    Membranes can potentially offer low-cost CO2 capture from post-combustion flue gas. However, the low partial pressure of CO2 in flue gases can inhibit their effectiveness unless methods are employed to increase their partial pressure. Selective-Exhaust Gas Recirculation (S-EGR) has recently received considerable attention. In this study, the performance of a dense polydimethylsiloxane (PDMS) membrane for the separation of CO2/N2 binary model mixtures for S-EGR application was investigated using a bench-scale experimental rig. Measurements at different pressures, at different feeding concentrations and with nitrogen as sweep gas revealed an average carbon dioxide permeability of 2943 ± 4.1%RSD Barrer. The bench-scale membrane module showed high potential to separate binary mixtures of N2 and CO2 containing 5–20% CO2. The permeability was slightly affected by feed pressures ranging from 1 to 2.4 bar. Furthermore, the separation selectivity for a CO2/N2 mixture of 10%/90% (by volume) reached a maximum of 10.55 at 1.8 bar. Based on the results from the bench-scale experiments, a pilot-scale PDMS membrane module was tested for the first time using a real flue gas mixture taken from the combustion of natural gas. Results from the pilot-scale experiments confirmed the potential of the PDMS membrane system to be used in an S-EGR configuration for capture of CO2.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback