Browsing by Author "Shamal, S. A. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Application of an on-line sensor to map soil packing density for site specific cultivation(Elsevier, 2016-04-24) Shamal, S. A. M.; Alhwaimel, Saad A.; Mouazen, Abdul MounemTillage is the most energy consuming operation in the primary production in agriculture. The majority of farmers worldwide adopt homogeneous tillage operations to optimise crop establishment, reduce weeds and compaction, where soil disturbance took place across the entire field including areas where no soil preparation is needed. This practice consumes high energy and leads to decrease soil resistance to water and air erosion. This paper investigates the potential of a previously developed on-line soil bulk density (BD) sensor to map packing density for the delineation of management zones for site specific tillage. The on-line sensor consisting of a multi-sensor platform pulled by a tractor was used to measure soil BD in two experimental fields with potato in East Anglia, UK. It consisted of a load cell to measure subsoiler draught, a wheel gauge to measure depth and a visible and near infrared (vis-NIR) spectrophotometer for the measurement of moisture content (MC). Based on these three on-line measured parameters, BD was calculated using a previously developed model with a hybrid numerical and multivariate statistical analysis. The packing density (PD) was then calculated for all on-line measured points as a function of BD and clay content (CC). Maps of soil BD and PD were produced, and both fields were divided into management zones with different tillage recommendations. Results, in the studied fields, showed that the on-line BD sensor can map not only the spatial distribution in BD but enable estimation of PD too. Classifying the PD into three compaction classes revealed that only 4.8% of the field needs aggressive tillage (primary and secondary tillage) and about 34.8% of the field requires harrowing or surface loosening with a cultivator (reduced tillage), while the remaining area of the field do not need any sort of tillage. Virtual calculations of fuel consumption and CO2 emission in one field based on the three PD classes confirmed that site specific tillage would significantly reduce energy consumption and CO2 emission, as compared to reduced and conventional tillage practices. By this it can be concluded that the on-line multi sensor platform for the assessment of PD holds a great potential for mapping and managing soil compaction site specifically. A future study is needed to relate soil compaction to actual plant growth and yield, and evaluate cost of production and practical limitations of this approach.Item Open Access Assessing spectral similarities between rainfed and irrigated croplands in a humid environment for irrigated land mapping(IP Publishing, 2014-06-01) Shamal, S. A. M.; Weatherhead, E. K.Deriving accurate spatial assessments of the distribution of irrigated crops has become more important in recent years for water resource planning, particularly where irrigation water resources are constrained. However, this is easier in arid climates than in humid areas such as eastern England. The challenges in using alternative vegetation indices derived from remote sensing to discriminate between irrigated and rainfed crops in a humid climate are described, focusing on potato (Solanum tuberosum L.), the most important irrigated crop in England. Three techniques were evaluated: (a) temporal profile comparisons using the Normalized Difference Vegetation Index (NDVI); (b) cluster analysis combining the NDVI and the Normalized Difference Water Index (NDWI); and (c) identifying differences in chlorophyll content using green and near infrared bands. However, the study confirmed that the spectral signatures of irrigated and rainfed potato in England during a typical summer are very similar, presumably due to frequent rainfall events which reduce differences in water stress and chlorophyll content. The implications for using remote sensing to estimate irrigated areas in humid climates are discussed.