CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Skouteris, George"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving water efficiency in the beverage industry with the internet of things
    (IGI Global, 2021-08-31) Jagtap, Sandeep; Skouteris, George; Choudhari, Vilendra; Rahimifard, Shahin
    The food and beverage industry is one of the most water-intensive industries, with water required for various processes (e.g., washing, cooking, cleaning) at almost every stage of the production, as well as being a key constituent in many food and drink products. Therefore, a real-time efficient water management strategy is imperative, and the novel internet of things (IoT)-based technologies can be of significant help in developing it. This chapter presents the architecture of an IoT-based water-monitoring system followed by the demonstration of a case study of a beverage factory wherein the monitoring system helped understand the detailed water usage as well as finding solutions and addressing overconsumption of water during the manufacturing processes. The successful deployment of IoT helped reduce the annual water consumption by 6.7%, monitor water usage in real-time, and improve it.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An Internet of Things approach for water efficiency: a case study of the beverage factory
    (MDPI, 2021-03-18) Jagtap, Sandeep; Skouteris, George; Choudhari, Vilendra; Rahimifard, Shahin; Duong, Linh Nguyen Khanh
    There is a lack of knowledge among food manufacturers about adopting the Internet of Things (IoT)-based water monitoring system and its ability to support water minimisation activities. It is therefore necessary to investigate the applicability of IoT-based real-time water monitoring systems in a real food manufacturing environment to pursue water-saving opportunities accordingly. This article aims to propose an architecture of an IoT-based water-monitoring system needed for real-time monitoring of water usage, and address any water inefficiencies within food manufacturing. This article looks at a study conducted in a food beverage factory where an IoT-based real-time water monitoring system is implemented to analyse the complete water usage in order to devise solutions and address water overconsumption/wastage during the manufacturing process. The successful implementation of an IoT-based real-time water monitoring system offered the beverage factory a detailed analysis of the water consumption and insights into the water hotspots that needed attention. This action initiated several water-saving project opportunities, which contributed to the improvement of water sustainability and led to an 11% reduction in the beverage factory’s daily water usage

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback