CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Song, Zhihuan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Retrofit self-optimizing control of Tennessee Eastman process
    (Institute of Electrical and Electronics Engineers, 2016-05-19) Ye, Lingjian; Cao, Yi; Yuan, Xiaofeng; Song, Zhihuan
    This paper considers near-optimal operation of the Tennessee Eastman (TE) process by using a retrofit self-optimizing control (SOC) approach. Motivated by the factor that most chemical plants in operation have already been equipped with a workable control system for regulatory control, we propose to improve the economic performance by controlling some self-optimizing controlled variables (CVs). Different from traditional SOC methods, the proposed retrofit SOC approach improves economic optimality of operation through newly added cascaded SOC loops, where carefully selected SOC CVs are maintained at constant by adjusting set-points of the existing regulatory control loops. To demonstrate the effectiveness of the retrofit SOC proposed, we adopted measurement combinations as the CVs for the TE process, so that the economic cost is further reduced comparing to existing studies where single measurements are controlled. The optimality of the designed control architecture is validated through both steady state analysis and dynamic simulations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Subset measurement selection for globally self-optimizing control of Tennessee Eastman process
    (Elsevier, 2016-08-09) Ye, Lingjian; Cao, Yi; Yuan, Xiaofeng; Song, Zhihuan
    The concept of globally optimal controlled variable selection has recently been proposed to improve self-optimizing control performance of traditional local approaches. However, the associated measurement subset selection problem has not be studied. In this paper, we consider the measurement subset selection problem for globally self-optimizing control (gSOC) of Tennessee Eastman (TE) process. The TE process contains substantial measurements and had been studied for SOC with controlled variables selected from individual measurements through exhaustive search. This process has been revisited with improved performance recently through a retrofit approach of gSOC. To extend the improvement further, the measurement subset selection problem for gSOC is considered in this work and solved through a modification of an existing partially bidirectional branch and bound (PB3) algorithm originally developed for local SOC. The modified PB3 algorithm efficiently identifies the best measurement candidates among the full set which obtains the globally minimal economic loss. Dynamic simulations are conducted to demonstrate the optimality of proposed results.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback