CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Steffens, Norbert"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evaluation of the performance variation of porous air pads on discontinuous surfaces
    (Elsevier, 2019-10-31) Sanz, Claude; Morantz, Paul; Lunt, Alexander J. G.; Shore, Paul; Chérif, Ahmed; Schneider, Jürgen; Mainaud-Durand, Hélène; Steffens, Norbert
    A new high accuracy position measurement system has been developed. It measures the position of a 0.1 mm diameter copper-beryllium wire that informs alignment of energy beams in advanced particle accelerators. This new measurement system employs air pads to provide precision and friction free rotation of a sensor. To enable the measuring system to be positioned over the wire, a slot is required in the measuring device rotor. To optimise the design of this measuring system it was necessary to understand the performance of the air pads as they pass over the gaps (slots) in the rotor. This paper describes modelling and experiments that were performed to gain understanding of air pad performance when encountering such a surface gap. Particularly, an analytical model of the variation of load of a 20 mm × 40 mm porous air pad during the passing of a 1.5 mm wide slotted surface. Subsequent experimentation revealed that the general behaviour of the load variation had been captured effectively. The results of this analysis reveal that air pads of this size can reliably pass above an opening of this size with about 14% reduction in force. The results and the methodology presented in this paper can be used as an effective basis for future designs and studies
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Form measurement of a 0.1 mm diameter wire with a chromatic confocal sensor, with associated uncertainty evaluation
    (IOP Publishing, 2018-06-07) Sanz, Claude; Giusca, Claudiu; Morantz, Paul; Marin, Antonio; Chérif, Ahmed; Schneider, Jürgen; Mainaud-Durand, Hélène; Shore, Paul; Steffens, Norbert
    The accurate characterisation of a copper–beryllium wire with a diameter of 0.1 mm is one of the steps to increase the precision of future accelerators' pre-alignment. Novelties in measuring the wire properties were found in order to overcome the difficulties brought by its small size. This paper focuses on an implementation of a chromatic-confocal sensor leading to a sub-micrometric uncertainty on the form measurements. Hence, this text reveals a high-accuracy metrology technique applicable to objects with small diameters: it details the methodology, describes a validation by comparison with a reference and specifies the uncertainty budget of this technique.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    New potential for the Leitz Infinity Coordinate Measuring Machine
    (Euspen, 2015-06-01) Sanz, Claude; Cherif, Ahmed; Mainaud-Durand, Hélène; Schneider, Jürgen; Steffens, Norbert; Morantz, Paul; Shore, Paul
    The following study is realised within the frame of the PACMAN project: a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale, which is a Marie Curie program supported by the European commission and hosted by CERN (European Organisation for Nuclear Research). The aim of this program is to develop and build a pre-alignment bench on which each component is aligned to the required level in one single step using a stretched wire. During the operation, the centre of the stretched wire is aligned with the magnetic axis of the magnet. Then, the position of the wire is measured to the highest possible accuracy using a 3D Coordinate Measuring Machine (CMM) Leitz PMM-C Infinity from HEXAGON Metrology. The research described in this paper is two-fold: on one hand we apply a strong magnetic field to the head of the CMM and evaluate its influence on the measurement accuracy; on the other hand we measure the position

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback