CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Subhadu, Vaishnav Venkata"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Digital twin architecture for a sustainable control system in aircraft engines
    (Springer , 2024-08-08) Farsi, Maryam; Namoano, Bernadin; Latsou, Christina; Subhadu, Vaishnav Venkata; Deng, Haoxuan; Sun, Zhen; Zheng, Bohao; D’Amico, Davide; Erkoyuncu, John Ahmet; Karakoc, T. Hikmet; Colpan, Can Ozgur; Dalkiran, Alper
    Over the past decades, climate change has remained one of the major global challenges in the world. In the aviation and aerospace industry, the environmental sustainable development strategies towards carbon-neutral mainly focus on efficiency and demand measures, sustainable fuels, renewable energies, and removal and carbon offsetting. The carbon dioxide equivalent (CO2e) emissions footprint of an aircraft is primarily determined by energy and fuel efficiency. The advanced engine control systems of an aircraft can optimise the engine performance to achieve energy efficiency, fuel optimal consumption, and emission reduction. This paper proposed a digital twin architecture of a sustainable aircraft control system that allows the system to collect, analyse, and optimise sustainability-related data and to provide insight to operators, engineers, maintainers, and designers. The required information, knowledge and insight databases across flight environment, engine specification, and gas emissions are identified. The research argued that the proposed architecture could enhance engine energy efficiency, fuel consumption, and CO2e footprint reduction and enable (near) real-time data monitoring, proactive anomaly detection, forecasting, and intelligent decision-making within an automated sustainability control system. This research suggests ontology-based digital twin as an effective approach to further develop a cognitive twin that facilitates automated decision-making within the aircraft control system.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback