Browsing by Author "Sun, Changbin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Energy production from steam gasification processes and parameters that contemplate in biomass gasifier - a review(Elsevier, 2019-11-26) Siwal, Samarjeet Singh; Zhang, Qibo; Sun, Changbin; Thakur, Sourbh; Gupta, Vijai Kumar; Thakur, Vijay KumarThe transformation of biomass using steam gasification is a chemical route to facilitate changes in organic or residue supported carbonaceous substances addicted to carbon mono-oxide, hydrogen including carbon-di-oxide, etc. However, to commercialize the method of steam gasification, the hurdles persist during the gasification as well as downstream processing. This article delivers a summary of the different approaches that are described in the previous studies to achieve H2 refinement and adaptation within the gasifier system. These include advanced aspects in the research and development of biomass gasification (alike advancements under the gasification operation). The upshot of diverse operating conditions like steam flow rate, operating temperature, moisture content, gasifier agents, residence time, biomass to air, steam to biomass, equivalence ratio, etc. towards the execution of biomass gasifier. This review accomplishes that the interdependence of several issues must be considered in point to optimise the producer gas.Item Open Access Graphitic carbon nitride doped copper–manganese alloy as high–performance electrode material in supercapacitor for energy storage(MDPI, 2019-12-18) Siwal, Samarjeet Singh; Zhang, Qibo; Sun, Changbin; Thakur, Vijay KumarHere, we report the synthesis of copper–manganese alloy (CuMnO2) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO2-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as the energy storage material in the alkaline media and it has shown good catalytic behavior in supercapacitor applications. The CuMnO2-gCN demonstrates outstanding electrocapacitive performance, having high capacitance (817.85 A·g−1) and well-cycling stability (1000 cycles) when used as a working electrode material for supercapacitor applications. For comparison, we have also used the gCN and Cu2O-gCN for supercapacitor applications. This study proposes a simple path for the extensive construction of self-attaining double metal alloy with control size and uniformity in high-performance energy-storing materials