CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tawfik, Mohamed M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Light source selection for a solar simulator for thermal applications: A review
    (Elsevier, 2018-04-24) Tawfik, Mohamed M.; Tonnellier, Xavier; Sansom, Christopher L.
    Solar simulators are used to test components and systems under controlled and repeatable conditions, often in locations with unsuitable insolation for outdoor testing. The growth in renewable energy generation has led to an increased need to develop, manufacture and test components and subsystems for solar thermal, photovoltaic (PV), and concentrating optics for both thermal and electrical solar applications. At the heart of any solar simulator is the light source itself. This paper reviews the light sources available for both low and high-flux solar simulators used for thermal applications. Criteria considered include a comparison of the lamp wavelength spectrum with the solar spectrum, lamp intensity, cost, stability, durability, and any hazards associated with use. Four main lamp types are discussed in detail, namely argon arc, the metal halide, tungsten halogen lamp, and xenon arc lamps. In addition to describing the characteristics of each lamp type, the popularity of usage of each type over time is also indicated. This is followed by guidelines for selecting a suitable lamp, depending on the requirements of the user and the criteria applied for selection. The appropriate international standards are also addressed and discussed. The review shows that metal halide and xenon arc lamps predominate, since both provide a good spectral match to the solar output. The xenon lamp provides a more intense and stable output, but has the disadvantages of being a high-pressure component, requiring infrared filtering, and the need of a more complex and expensive power supply. As a result, many new solar simulators prefer metal halide lamps.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback