CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Thompson, J. W. C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Phenomenological investigation of the influence of Cathodic protection on corrosion fatigue crack propagation behaviour, in a BS 4360 50D type structural steel and associated weldment microstructures, in a marine environment.
    (Cranfield University, 1984-06) Thompson, J. W. C.; Hockenhull, B. S.
    The influence of Cathodic Protection potential upon corrosion fatigue crack propagation rates in a medium7strength ferritic-pearlitic structural steel (ES 4360 grade 50D) and associated weldment microstructures in simulated sea-water was studied and the results were presented in bi-modal da/dN vs AK curves. Above transition propagation rate data was satisfactorily described by the Paris relationship da/dN = C. AKm and a relationship of the formin = Aln C+D between Paris exponent m and constant C was confirmed. In all microstructures the influence of cathodic protection on crack propagation rate was found to be dependent upon the level of cathodic potential applied and crack depth. A. critical crack depth of approximately 5.0mm was identified. Optical crack monitoring combined with graphical data processing, was found to be particularly effective for the characterisation of corrosion fatigue crack propagation behaviour and resulted in minimal data scatter. The phenomena of transition which was evident in the bi-modal da/dN vs LK curves was found to be associated with secondary or branched-crack activity. Back-extrapolation of below transition data was used to estimate Arm values and showed that the weldment beat-affected zone microstructure was a major potential source of fatigue or corrosion fatigue fracture. The effect of a single cycle of simulated overload, to stormload levels, on both fatigue and corrosion fatigue crack propagation behaviour in parent plate material was studied and the phenomenon of retardation was confirmed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback