CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Valencia, Nicolas"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of a hybrid adaptive neuro-fuzzy inference system with coulomb-counting state-of-charge estimator for lithium–sulphur battery
    (Springer, 2022-11-08) Valencia, Nicolas; Fotouhi, Abbas; Shateri, Neda; Auger, Daniel J.
    This study presents the development of an improved state of charge (SOC) estimation technique for lithium–sulphur (Li–S) batteries. This is a promising technology with advantages in comparison with the existing lithium-ion (Li-ion) batteries such as lower production cost and higher energy density. In this study, a state-of-the-art Li–S prototype cell is subjected to experimental tests, which are carried out to replicate real-life duty cycles. A system identification technique is then used on the experimental test results to parameterize an equivalent circuit model for the Li–S cell. The identification results demonstrate unique features of the cell’s voltage-SOC and ohmic resistance-SOC curves, in which a large flat region is observed in the middle SOC range. Due to this, voltage and resistance parameters are not sufficient to accurately estimate SOC under various initial conditions. To solve this problem, a forgetting factor recursive least squares (FFRLS) identification technique is used, yielding four parameters which are then used to train an adaptive neuro-fuzzy inference system (ANFIS). The Sugeno-type fuzzy system features four inputs and one output (SOC), totalling 375 rules. Each of the inputs features Gaussian-type membership functions while the output is of a linear type. This network is then combined with the coulomb-counting method to obtain a hybrid estimator that can accurately estimate SOC for a Li–S cell under various conditions with a maximum error of 1.64%, which outperforms the existing methods of Li–S battery SOC estimation.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback